

Chemical Studies for New Local Sources to be used for Leather Fat Liquoring as Alternative for Imported Liquor

A Thesis Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

By

Mohamed Ahmed El - Sayed Habib (M. Sc. 2002)

Supervisors

Prof. Dr. Abdel Gawad Mohamed RabieProf. of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Nabil Hussein El - Sayed

Prof. of Organic Chemistry, Department of Tanning Materials and Leather Technology, National Research Center

Dr.Ola Abd El- Tawab Mohamed

Ass. Prof. of Organic Chemistry, Department of Tanning Materials and Leather Technology, National Research Center

Department of Chemistry
Faculty of Science Ain Shams University
2010

Approval Sheet

Chemical Studies for New Local Sources to be used for Leather Fat Liquoring as Alternative for Imported Liquor

Submitted by: Mohamed Ahmed El Sayed - Habib

Degree: Doctor of philosophy of science in Chemistry

This Thesis has been approved by:

Prof.Dr. Abdel Gawad Mohamed Rabie

Prof. of Organic Chemistry, Faculty of Science Ain Shams University

Prof. Dr. Nabil Hussein El - Sayed

Prof. of Organic Chemistry, Department of Tanning Materials and Leather Technology, National Research Center

Dr.Ola Abd El - Tawab Mohamed

Ass. prof. of Organic Chemistry, Department of Tanning Materials and Leather Technology, National Research Center

Committee in Charge

Head of chemistry department Prof. Dr.Fakhry A. El Bassiouny

Date / / 2010

الى كل المخلصين المتطلعين حائما الى مكارم الأخلاق الذين يحيمن بقيم الحب مالعدل مالخير.

ACKNOWLEDGEMENT

First of all thanks to ALLAH who helps us to fulfill this work. Grateful appreciation is expressed to Prof. Dr. Abd El - Gawad Mohamed Rabie, organic chemistry professor, Ain Shams University, for his encouragement and support.

The author also expresses his gratitude and appreciation to *Prof. Dr. Nabil Hussein EL - Sayed,* organic chemistry professor, Department of Tanning Materials and Leather Technology, National Research Center, for his valuable guidance, discussion, advice, during the studies of the leather fat liquoring, the author is thanking his effort in writing and revision.

Thanks are also expressed to Ass. Prof. Dr. Ola Abd El-Tawab Mohamed, assistant organic chemistry professor, Department of Tanning Materials and Leather Technology, National Research Center, for her continuous help and valuable instructions, the author is thanking her valuable guidance, and her effort in writing and revision.

Thanks are also expressed to the staff of Tanning Research Laboratory, for their kind aid.

The financial support and facilities offered by *National* Research Center that enabled the author to carry out this work are greatly appreciated.

Aim of the work

Aim of the work

The goal of this search is to use local sources for producing leather fat liquors used in leather industry. Therefore, we aimed to find cheap and economic local fatty matter which can be chemically treated and emulsified in water to be used as leather fat liquoring agent alternative for the imported fat liquors. In addition to, the research focused on suitable methods for emulsifying the treated fat in aqueous phase with a great stability in different conditions of application for leather industry.

Contents

1. Aim of the work	1
2. Introduction	2
2. 1 Histology of the animal skin	2
2. 2 Chemical constitution of skin	2
2. 3 Collagen chemical structure	2
2. 4 Leather production and its processing	3
2.5 Chemistry of tanning process	3
2. 6 Fat liquoring	5
2. 7 Fats and oils epoxidation	13
2. 7. 1 Preparation of epoxides	14
2. 7 .2 Acid cleavage of oxirens	19
2. 7 .3 Epoxidation in situ	21
2. 7. 4 Epoxidation and technology	21
2 .8 Sulfonated fats	22
2 .9 Phosphorylated oils and fats	27
3. Experimental	30
3. 1 Materials.	30
3. 2 Chemicals and Reagents	30
3. 3 Techniques	32
3. 4 Chemical analysis of fat	32
3. 4. 1 Determination of water content	33
3. 4. 2 Determination of ash content	33
3. 4. 3 Determination of acid value	43
3. 4 .4 Determination of Saponification value	35

3. 4. 5 Determination of unsaponified matter	35
3. 4. 6 Determination of iodine value	36
3. 5 Fatty acids separation	7
3. 6 Fat chemical treatment	38
3. 6. 1 Bone fat chlorosulfonation	38
3. 6. 2 Bone fat phosophorylation	38
3. 6. 3 Fat epoxidation in situ	39
3. 6. 4Epoxidized fat sulfonation	39
3. 7 Analysis of treated fat3	39
3. 7. 2 Determination of total alkalinity4	10
3. 7. 3 Determination of organically combined SO ₃ 4	10
3. 7.4 Determination of total desulfated fatty matter4	1
3. 8 Fat liquor Evaluation	12
3. 8. 1 Determination of neutral oil	12
3. 8. 2 Stability of 10 % fat liquor emulsion towards tan liquor,	
hard nd pickle liquor	43
3. 8. 3 Evaluation of the emulsions aspects4	3
3. 8. 4 Stability towards acids4	13
3. 8. 5 Stability towards alkali4	4
3. 8. 6 Stability towards metallic ions4	4
3. 9 Preparation of leather pieces for investigating4	15
3. 9. 1 Neutralization	45
3. 10 Fat liquoring	16
3. 11 Chemical analysis of fat liquored leather 4	46
3. 11. 1 Determination of free fatty matter	46
3. 11. 2 Determination of total fatty matter by applying stamp's	S

method.	47
3. 11. 3 Calculation of the bounded fatty matter	47
3. 12 Physical analysis of fat liquored leather	
3. 12. 2 Visual properties outlooks	48
3. 12. 3 Mechanical analysis	48
4. Results and discussion	49
4. 1 Chemical analysis of crude animal bone fat	49
4. 2 The fatty acids analysis spectra of crude anin	nal bone
fat	52
4. 3 Fatty acids separation from the crude animal	bone
fat	60
 4. 4 Animal bone fat Chlorosulfonation	onation of87
4. 4. 3 Effect of solvent of reaction on chlorosulfor fat	nation of
4. 5 Animal bone fat phosophorylation	96 on of fat
4. 5. 2 Effect of temperature of reaction on phosphofat	orylation of
4. 5. 3 Effect of Solvent of reaction on phosphoryl	lation of fat
4. 6 Animal bone fat sulfonation	103
 4. 7 Fat liquor Evaluation	109
liquor	

4. 7. 4 Stability of the obtained liquors towards acids.	
	116
4. 7. 5 Stability of the obtained fat liquors towards	110
alkali	
ions	
4. 8 Preparation of leather pieces for investigation	
4. 8. 1 Neutralization	
4. 9 Fat liquoring	
4. 10 Characteristics of fat liquored chrome tanned	
leather	124
4. 10. 1 Chemical analysis of fat liquored	
leather	124
4. 10. 1. 1 Determination of fatty matter inside fat	
liquored leather samples	125
4.10. 1.1.1 Determination of free fatty matt	er
inside fat liquored leather	105
samples	
matter of fat liquored leather	/
samples	127
4. 10.2 physical analysis of fat liquored	
leather	
4. 10. 2.1 Determination of moisture	
4. 10. 2.2 Visual properties and outlook	131
4. 10 .2. 3 Mechanical properties of fat liquored	122
leather	
5. English summary	
6. References	
7. Arabic summary	1

List of Tables

Table	Page
1. Chemicals and reagents used in the study	31
2. Analytical data of untreated crude fat	49
3. The fatty acids in animal bone fat	54
4. Characteristics of chlorosulfonated fat obtained without solvent at 40 °C and at different stirring times	78
5. Characteristics of chlorosulfonted fat obtained at different temperatures for two hours without solvent	90
6. Characteristics of chlorosulfonated fat obtained at 40° C with two hours stirring time and with different solvents	94
7. Characteristics of phosphorylated fat obtained without solvent at 40°C with different stirring times	97
8. Characteristics of phosphorylated fat obtained without solvent at two hours stirring time with different temperatures.	99
9. Characteristics of phosphorylated fat obtained at 40°C for two hours stirring and with different solvents	102
10. Characteristics of sulfonated epoxidized fat using Dowex50 WX2 as heterogeneous catalyst	109

11. The neutral fatty matter contained in different fat liquor	
samples	110
12. Stability of 10 % emulsion of fat liquor towards tan	
liquor, hard water and pickle liquor	111
13. Evaluation of the emulsion aspect for chlorosulfonated	
Fat	113
14. Evaluation of the emulsion aspect for Phosphorylated	
fat	114
15. Evaluation of the emulsion aspect for sulfonated fat	115
16. The stability of fatliquors solutions towards acids	117
17. Emulsion stability of obtained chlorosulphonated fat in	
the presence of metallic ions	119
18. Emulsion stability of obtained Phosphorylated fat in the	
presence of metallic ions	120
19. Emulsion stability of obtained sulfonated fat in the	
presence of metallic ions	121
20. Free fatty matter extracted from leather samples liquored	
with different fat liquors	126
21. Bounded fatty matter extracted from leather samples	
liquored with different types of treated fats	128
22. Total uptake of fatty matter extracted from leather	

List of Tables

samples liquored with different fat liquors solutions	129
23. Moisture ratios of leather samples liquored with different	
types of treated fats	131
24 - Effect of fat liquor concentration on tensile strength and	
elongation at break for leather samples liquored with different	133
reated fats	

List of Figures

Figure	Page
1. Comparison between iodine value of the animal bone fat with	
iodine values of other fats used in leather fat liquoring	51
2 . GC/MS of cured animal bone fat	53
3. I R spectrum of crude animal bone fat	58
4 .Raman spectrum of crude animal bone	59
5. I R spectrum of compound 1	61
6. ¹ H NMR spectrum of compound 1	63
7. ¹³ C NMR spectrum of compound 1	64
8. I R spectrum of compound 2	67
9. ¹ H NMR spectrum of compound 2	69
10. ¹³ C NMR spectrum of compound 2	70
11. IR spectrum of compound 3	73
12. ¹ H NMR spectrum of compound 3	75
13- ¹³ C NMR spectrum compound 3	76
14. MS/ MS ESI spectrum of compound 3	78
15. IR spectrum of compound 4	81
16. ¹ H NMR spectrum of compound 4	83

List of Figures

17. ¹³ C NMR spectrum of compound 4	84
18. Effect of time of the reaction on the iodine value and SO ₃ content during chlorosulfonation	88
19.Effect of time of reaction on acid value during chlorosulfonation of fat	89
20. Effect of temperature of reaction on iodine value and SO ₃ content during chlorosulfonation of fat	92
21. Effect of temperature of reaction on acid value during chlorosulfonation of fat	93
22. Effect of the solvent of the reaction on iodine value, SO ₃ , and acid value during chlorosulfonation of fat	96
23. Effect of reaction time on iodine and acid values during phosphorylation of fat	98
24. Effect of temperature of the reaction on iodine and acid values during phsophorylation of fat	101
25. Effect of solvent of the reaction on iodine and acid values during phsophorylation of fat	103
26. Effect of catalyst on iodine value during epoxidation of	
fat	108