The Efficacy of A Language-based Training Program as a Phoniatric Approach for Remediation of Egyptian Learning-Disabled Children

A Thesis
Submitted for Partial Fulfillment of the Doctoral Degree in Phoniatrics

Presented By

Omayma El-Sayed Mohammed Afsah

M.B.B.Ch., M.Sc

Assistant lecturer of Phoniatrics Faculty of Medicine- Mansoura University

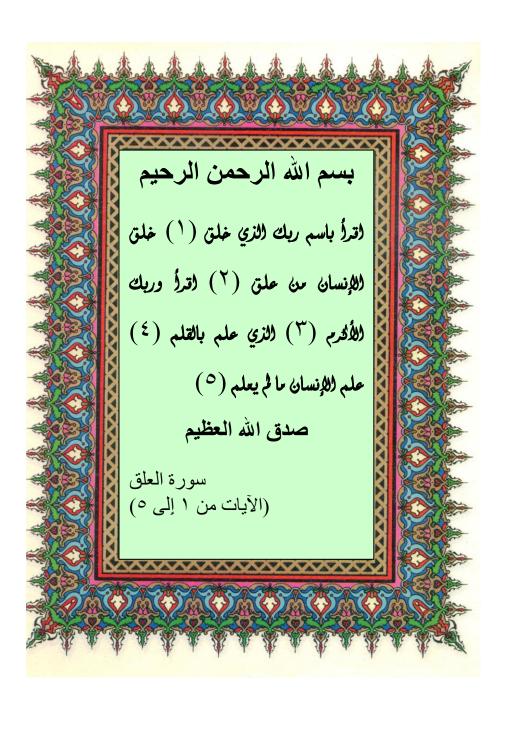
Supervised By

Prof. Dr. Safaa Refaat El-Sady

Professor of Phoniatrics Faculty of Medicine- Ain Shams University

Prof. Dr. Alia Mahmoud El-Shoubary

Professor of Phoniatrics Faculty of Medicine- Ain Shams University


Prof. Dr. Noran Nagdy El-Assal

Professor of Phoniatrics Faculty of Medicine- Ain Shams University

Prof. Dr. Tamer Samir Abou-Elsaad

Professor of Phoniatrics Faculty of Medicine- Mansoura University

> Faculty of Medicine Ain Shams University 2011

THIS WORK
IS
LOVELY
DEDICATED
TO MY PARENTS

Acknowledgement

All gratitude goes in the first place to **ALLAH**, who has ever helped and guided me.

I would like to express my deepest appreciation and profound gratitude to **Prof. Dr. Safaa Refaat El-Sady**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University, who devoted her time and efforts to this work. I am truly grateful to her for her expert kind supervision and ultimate support, and whatever has been said is little to express my respect and thanks.

I am greatly indebted to **Prof. Dr. Alia Mahmoud El-Shoubary**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University for her valuable advice, and for her kind help and constant encouragement all through this work.

I am also deeply grateful to **Prof. Dr. Noran Nagdy El-Assal**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University for her constructive guidance, valuable advice, and for her kindness and keen supervision.

I would like to express my sincere thanks and great appreciation to **Prof. Dr. Tamer Samir Abou-Elsaad**, Professor of Phoniatrics, Faculty of Medicine, Mansoura University, for his generous help, fruitful scientific comments and constant support.

I am also thankful for all staff members and all my colleagues in the unit of phoniatrics, in both Ain Shams and Mansoura Universities, for their for their help and support.

Omayma El-Sayed Afsah

List of Contents

	Page
Introduction	1
Aim of the work	6
Review of literature	
 Psycholinguistic basis of learning. 	7
 Learning and memory. 	30
• An overview of learning disabilities.	39
• Evaluating therapy outcome.	162
Subjects and Methods	179
Results	216
Discussion	248
Conclusion and Recommendations	266
Summary	268
References	271
Appendices	
Arabic summary	

List of Tables

Table	Title	Page
number		
1	Descriptive statistics of the results of the PA subtests applied to children	219
2	The 5 th percentile values of the PA subtests of the 3 age groups	220
3	Descriptive statistics of the results of the PA test of the 3 age groups	221
4	Correlation between PA tasks and age	222
5	Descriptive statistics of the results of the semantics test of the 2 age groups	223
6	The distribution of group I (experimental group) and group II (control group) according to age	224
7	The distribution of group I and group II according to sex	225
8	Correlation between PA and phoneme grapheme correspondence	229
9	The distribution of the various deficits among patients	230
10	Comparison between performance of group "I" (n=15) and group "II" (n=10) at the pre-test evaluation	231
11	Comparison of group "I" performance (n=15) in post-test versus pre-test evaluations	233
12	Percentage of improvement of experimental group cases in different parameters	234
13	Comparison of group "II" performance (n=10) in post-test versus pre-test evaluations	235
14	Comparison between improvement of group "I" (n=15) and group "II" (n=10) with lower order process disorders	237
15	Comparison between improvement of group "I" (n=15) and group "II" (n=10) with higher order process disorders	238

16	Comparison between improvement of group "I" (n=15) and group "II" (n=10) with memory disorders	240
17	Comparison between group "I" (n=15) and group "II" (n=10) in their pre-test performance on both reading parameters	242
18	comparison between number of words read correctly by group I "experimental group" in posttest versus pretest evaluations	242
19	comparison between number of words read correctly by group II "control group in posttest versus pretest evaluations	243
20	Comparison between improvement in reading performance of groups I and II	244
21	The progress of the patients through developmental stages of reading	247

List of Figures

Figure	Title	Page
number		
1	The developmental continuum of	18
	phonological awareness	
2	Example of language test profile of a	183
	child with mixed receptive and	
	expressive language disorder	
3	Example of Illinois test profile for a	187
	child with mixed auditory vocal and	
	visual motor channels disabilities	
4	Figures used in visual sequential	193
	memory test	
5	Comparison between percentage of	236
	improvement of group "I" (n=15) and	
	group "II" (n=10) with lower order	
	process disorders	
6	Comparison between percentage of	238
	improvement of group "I" (n=15) and	
	group "II" (n=10) with higher order	
	process disorders	
7	Comparison between percentage of	240
	improvement of group "I" (n=15) and	
	group "II" (n=10) with memory	
	disorders	
8	Comparison between percentage of	244
	improvement of reading in group "I"	
	(n=15) and group "II" (n=10)	

List of Abbreviations

- ADHD= Attention Deficit Hyperactivity Disorder.
- AIT= Auditory integration training.
- C.A.= Chronological age.
- CAPD= Central auditory processing disorder.
- CELF= Clinical Evaluation of Language Fundamentals.
- CTOPP= Comprehensive Test of Phonological Processing.
- C-V= Consonant-Vowel.
- C-V-C= Consonant-Vowel-Consonant.
- DART= Direct Access Reading Technique.
- DTI= Diffusion tensor imaging.
- EEG= Electroencephalogram.
- EP= Evoked Potential.
- FMRI= Functional Magnetic Resonance Imaging.
- IQ= Intelligence Quotient.
- LDs= Learning disabilities.
- M.A.= Mental age.
- MLD= Masking Level Difference.
- MRI= Magnetic Resonance Imaging.
- MRS= Magnetic Resonance Spectroscopy.
- NIM= Neurological Impress Method.

- PA= Phonological awareness.
- PACT = Parent And Children Together.
- PET= Positron Emission Tomography.
- PPVT= Peabody Picture Vocabulary Test.
- QEEG= Quantitative EEG.
- RA= Reading Achievement.
- REA = Reading expectancy age.
- RTI= Response to Intervention.
- SPIN= Speech-Intelligibility-In-Noise.
- TOPA-K= Test of Phonological Awareness-Kindergarten.
- TOVA= Test of Variables of Attention.
- TWF= Test of Word Finding.
- VAKT= visual, auditory, kinesthetic, tactile.
- VMI= Visual-Motor Integration.
- WCPM= Words read Correctly Per Minute.
- WF= Word finding.

INTRODUCTION

Introduction

Learning disabilities is a generic term that refers to a heterogeneous group of disorders manifested by significant difficulties in the acquisition and use of listening, speaking, reading, writing, reasoning, or mathematical abilities. These disorders are intrinsic to the individual and presumed to be due to central nervous system dysfunction (*National Joint Committee on Learning Disabilities*, 1998).

Little (1999) broadly classified learning disabilities into three main subtypes:

1- Language-based learning disabilities:

These include any disabilities that affect language including problems in reading, spelling, and written composition. They are due to auditory-verbal processing difficulties. Broadly, reading disorders fall into two types: disorders of decoding and word identification at the word level (dyslexia); and disorders of reading comprehension that affect both single word and text comprehension (sometimes termed hyperlexia).

Dyslexia is probably the most well known languagebased learning disability, and may be the most common. Often dyslexia is a part of a larger learning disability. 2- Non-verbal learning disability (also called "right-hemisphere learning disorders"):

It includes a cluster of neuropsychological, academic, and social-emotional characteristics that reflects primary deficiencies in non-verbal reasoning. They are due to visual, perceptual and motor processing difficulties.

3- Learning disabilities that affect executive functions:

Executive Functions include: Organization (attention, decision-making, planning, sequencing, problem solving), Regulation (initiation of action, self-control, self-regulation) and Working memory (*Gioia et al.*, 2002).

From the Phoniatric point of view, *Supple (2000)* categorized language-based learning disabilities into:

- (1) Lower order process disorders: including phonological awareness deficits and sound production deficits.
- (2) Higher order process disorders: including vocabulary deficit (including word finding difficulty), semantic deficit and syntactic deficit.

The causes for learning disabilities are not well understood, and sometimes there is no apparent cause for a learning disability. However, some neuroanatomical and neurophysiological deficits have been reported in the brain in developmental dyslexia (*Rae et al.*, 1998). Although reading development is influenced by numerous factors, compelling scientific and educational research has

documented the fact that phonological awareness is key to the process of learning to read and is a reliable predictor of later reading skill (*Holopainen et al.*, 2001; *Lane et al.*, 2002).

It is advisable to detect learning disabilities at an early age in order to provide appropriate educational interventions and behavioral therapy to optimize learning and prevent secondary emotional problems (*Bashir and Scavuzzo*, 1992).

Interventions need to be aimed at the specific needs of the child. No two children share the same set of strengths or areas of weaknesses. An effective intervention is one that utilizes a child's strengths in order to build on the specific areas in need of development (*National Joint Committee on Learning Disabilities*, 2006).

Management of dyslexic children can be divided into:

<u>1- Therapeutic interventions:</u> These can be subdivided into:

A) Language-based interventions. These include: the synthetic phonics approach, the whole-word approach, the language experience approach, the balanced Literacy approach, the Direct Access Reading Technique, the multisensory approach, in addition to reading comprehension support and instructional techniques for building reading fluency.

The best known multisensory method for remediation of dyslexia is the Orton-Gillingham method (*Orton*, 1937). Several commercial programs, mostly based on the Orton-Gillingham approach, are available. The majority of these programs, however, have undergone only simple, quasi-scientific efficacy studies showing that if the program is implemented by a skilled teacher, students make significant progress (*Hall and Moats*, 2002).

B) Non-linguistic interventions. These include treatments targeting auditory processing, treatments involving the visual system and treatments related to the cerebellar or motor system. A variety of treatments have been offered commercially in the absence of solid empirical research support for their efficacy. Other non-Validated or controversial treatment approaches for dyslexia include: dietary treatments, sensory integration therapy, medications and others (Lam, 2001).

<u>2-Accommodations and compensatory strategies:</u> These include accommodations for visual processing disorders and accommodations for auditory processing disorders.

Based on *Supple* categorization of language-based learning disabilities (*Supple*, 2000), remediation of these disabilities (including dyslexia) can be achieved by the following language-based program: