

Ain Shams University University College for Women (Arts, Science, and Education) Physics Department

PREPARATION AND CHARACTERIZATION OF NANOSTRUCTURE TRANSPARENT CONDUCTING OXIDE FILM

 $(SnO_2: F)$

By
Shimaa Ahmed Aly Ahmed Hassan

(**B.Sc.**)

THESIS

SUBMITED IN PARTIAL FULFILMENT OF THE REQUIRMENT
FOR THE DEGREE OF M.Sc. IN PHYSICS
(SOLID STATE)

TO

Department of Physics
University College for Women
Ain –Shams University

Egypt

(2010)

Ain Shams University University College for Women (Arts, Science, and Education) Physics Department

Title of Thesis PREPARATION AND CHARACTERIZATION OF NANOSTRUCTURE TRANSPARENT CONDUCTING OXIDE FILM (SnO₂: F)

By
Shimaa Ahmed Aly Ahmed Hassan
(B. Sc.)

Supervised

By

Prof. Dr. Hamdia Abd-El Hamied Zayed Prof. Dr. Hassan Hassan Afify

Department of Physics Department of Solid State Physics

University College for Women National Research Center

Ain-Shams University

(SOLID STATE)

Prof. Dr. Salama Edward Demian

Department of Solid State Physics

National Research Center

Ain Shams University University College for Women (Arts, Science, and Education) Physics Department

Name of Student: Shimaa Ahmed Aly Ahmed Hassan

Research Assistant-National Research Center

Graduate: B.Sc. in physics 2005, Department of Physics,

University College for Women, Ain Shams

University.

Title of Thesis: Preparation & Characterization of Nonostructure

Transparent Conductive Oxide Film SnO₂:F.

Scientific degree: M.Sc. Degree in Science "Solid State Physics"

Department: Physics.

Under supervision of:

1- Prof. Dr. Hamdia A. Zayed

Physics Department, University College for Women (Arts, Science and Education)-Ain shams University

2- Prof. Dr. Hassan H. Afify

Solid State Physics Department National Research Center

3- Prof. Dr. Salama E. Demian

Solid State Physics Department National Research Center

Post graduate administration

Date of research: / / 2010

Date of approval: / / 2010 Approval stamp:

Approval of Faculty Council: / /2010

Approval of University Council: / /2010

STATEMENT

Beside the work carried out in this thesis, the candidate attended post- graduate courses for one year in the following topics:

- Electronics
- Solid-state Physics (2 special courses).
- Theoretical Physics.
- Radiation Physics.
- Computer Science.
- English Language.

He has successfully passed the required examination in the above-mentioned topics.

Acknowledgements

Praise be to ALLAH, the Ever-Glorious

The author would like to express her deepest gratitude to **Prof. Dr. Hassan H.Afify,** Solid State Physics Department, National Research Center, Cairo, Egypt, for suggesting the point of research, technical advice, direct continuous supervision, and constructive comments during analysis of the data, fruitful discussion and help to write down in the final form.

Deep appreciation is felt to **Prof.Dr.Hamdia Abd El-hamid Zayed,** Physics Department, College for Girls, Ain Shams

University for her kind interest and supervision.

The author is grateful to **Prof.Dr. Salama Demian,** Solid State Physics Department, National Research Center, Cairo, Egypt, for able supervision, valuable advice.

<u>Contents</u>

Subject	Page
Acknowledgement	I
Contents	II
List of Tables I	γ_I
List of Figures	$\mathcal{V}II$
Abstract	ΙΧ
Chapter I: Introduction	1
I.1. Nanocrystalline Materials	2
I.2.Transparent Conducting Oxide-based thin films (TCO)	2
I.3. Aim and Objectives of This work	3
Chapter II: Basic Concepts	4
II.1. Material under Investigation pure and doped SnO ₂	5
II.2. Thin Solid Film Deposition Techniques	6
II.2.1. Evaporation	7
II.2.1.1. Vacuum Evaporation	8
II.2.1.2. Reactive evaporation	8
II.2.1.3. Activated reactive evaporation	8
II.2.2. Spray Pyrolysis	8
II.2.3. Chemical Vapor Deposition (CVD)	9
II.2.4. Pulsed Laser Deposition (PLD)	10
II.2.5. Sputtering	11

II.3. Thin Film Diagnostics	12
II.3.1. Composition, Structure and Morphology Analyses	12
II.3.1.1. Energy Dispersive X-Ray Spectroscopy (EDS)	12
II.3.1.2. Photoelectron Spectroscopy	13
II.3.1.2.a. X-Ray Photoelectron Spectroscopy (XPS)	13
II.3.1.3. X-Ray Diffraction (XRD)	16
II.3.1.4. Scanning Electron Microscopy (SEM)	18
II.3.1.5. Atomic Force Microscopy (AFM)	19
II.3.2. Optical Measurements	21
II.3.2.1. Transmission and Reflection	21
II.3.2.2. Absorption Theory	23
II.3.2.3. Interference Envelope	24
II.3.2.4. Refractive Index of Film n (λ)	27
II.3.2.5. Film Thickness	29
II.3.2.6. Band Edge	30
II.3.2.7. Carrier Densities	32
Chapter III: Literature Survey	33
III.1. Transparent Conductors	33
Chapter Iv: Experimental Techniques and Measurements	40
IV.1 Film Preparation Process	40
IV.1.1 The Spray Pyrolysis System	40
IV.1.2 Preparation of Spray Solution	42
IV.1.3 Substrate Cleaning	43
IV.2 The Spray Pyrolysis Parameters	43
IV.2.1 Substrate Temperature	44
IV.2.2 Deposition Time	44
IV 2.3 Nozzle-Substrate Distance	44

IV.2.4 Carrier Gas and Solution Flow Rate	44
IV.3 Film Deposition	44
IV.4. Diagnosis of the Prepared Films	46
IV.4.1. Film Thickness	46
IV.4.2. Structural Properties	46
IV.4.3. Film Surface Morphology	48
IV.4.4. Film Transmittance and Reflectance	48
IV.4.4.1. Film Transmittance	48
IV.4.5. Sheet Resistance	49
Chapter V: Results and Discussion	50
V-1 Structure Analysis	50
V-1-1- Pure Tin Oxide	50
V-1-1-a- Effect of substrate temperature and deposition time	50
V-1-1-b- Effect of precursor concentration	54
V-1-2- Incorporated Tin Oxide	56
V-1-2-1- Effect of Fluorine Incorporation	56
V-1-2-1-a- XRD for Group (A)	58
V-1-2-1-b- XRD for Group (B)	62
V-1-2- Crystallite Size	67
V-2- Optical Properties	69
V-2-1- Pure Tin Oxide	69
V-2-1-a- Effect of substrate temperature and deposition time	69
V-2-2- Tin oxide SnO ₂ Incorporated with Fluorine	73
V-2-2- a- Transmittance and Reflectance Spectra	74
V-2-3- Calculated Parameters from T-λ Curves	78
V-2-3-a- Optical Band Gap	78
V-2-3-b- Refractive Index	85
V-2-3-c- Film Thickness	88

V-3- Electrical Properties	92
V-4- Morphological Features	95
V-5- Figure of Merit	99
Summary and Conclusion	102
References	106
Arabic Summary	1

List of Tables

Table		Page
Table (1)	Preparation Conditions of SnO ₂ Samples	45
Table (2)	Optical and Electrical parameters for (0.8M) SnO ₂ :	F.83
Table (3)	The RMS roughness as a function of fluorine	
	concentration for (0.8 M) SnO ₂ : F	98
Table (4)	The values of Figure of Merit as fluorine	
	concentration for (a) (0.4 M) & (b) (0.8M)	
	SnO ₂ : F samples	.100

<u>List of Figures</u>

Figures	Page
Fig. (1)	A schematic diagram of thin film deposition techniques7
Fig. (2)	A schematic drawing of the CVD technique10
Fig. (3)	Principle of sputtering process
Fig.(4) S	Schematic diagram of excitation of core electrons14
Fig. (5)	Schematic of Scanning Electron Microscopy (SEM)18
Fig. (6)	Schematic diagram of an AFM20
Fig. (7)	Schematic diagram of the incident, reflected,
	and transmitted beams21
Fig. (8)	Schematic diagram of double beam spectrophotometer22
Fig. (9)	Different types of optical absorption23
Fig.(10)	System of an absorbing thin film on a thick finite
	transparent substrate
Fig. (11)	Measured transmission spectra of a-Si:H thin film
	on glass substrate
Fig. (12)	Example of extracted refractive (yellow) index with
	Cauchy fit (red,). The blue dashed lines show
	the 3% relative uncertainty in n. Sample Zn-00528
Fig.(13):	Graphical method for determining film
	thickness, interference order $l/2$ is plotted against n/λ .
	The slope of the line is twice the film thickness.
	Sample Zn-005, with $m_0=3/2$ and $d=617$ nm30
Fig.(14):	Left: Plot of α^2 vs hv with fit to linear region.
	The intercept is the band gap energy, Fig. (14): Right:

Plot of log (α) vs hv with fit to linear region.
The slope is the inverse of the Urbach disorder
parameter. Sample Zn-005, with $E_g = 3.28 \ eV$
and $E_0 = 75 \text{ meV}$
Fig.(15) Optical transmission of SnO ₂
Fig. (16) Schematic of the broadening of the optical band gap
due to the Moss -Bursteineffect39
Fig. (17) Schematic Diagram of the Spray System40
Fig. (18) The spray pyrolysis system in our laboratory in NRC41
Fig (19) XRD pattern for pure SnO ₂ (0.4 M)51
Fig. (20) XRD pattern for pure SnO ₂ (0.8 M)
Fig. (21) XRD patterns for SnO ₂ : F (0.4 M)
(a) 0% F, (b) 7.5% F, (c) 10% F, (d) 12.5% F,
(e) 15 % F, (f) 20% F, (g) 30% F, (h) 40% F59
Fig. (22) The calculated normalized intensities of (110),
(101), (200) and (211) peaks in XRD patterns
of SnO ₂ : F (0.4 M) films as a function
of fluorine concentration60
Fig. (23) XRD patterns for SnO ₂ : F (0.8 M)
(a) 0 % F, (b) 5 % F, (c) 10 % F, (d)
15 % F, (e) 20 % F, (f) 25 % F63
Fig. (24) The calculated normalized intensities of (110),
(101), (200) and (211) peaks in XRD patterns
of SnO ₂ : F (0.8 M) as a function
of fluorine concentration64
Fig. (25) The crystallite size for SnO ₂ : F samples of group
(A) 0.4 M & group (B) 0.8 M68
Fig. (26) Transmittance & Reflectance curves

for pure SnO_2 (0.4 M)
(a) Effect of deposition time at 450 °C,
(b) Effect of deposition temperature at 20 min70
Fig. (27) Transmittance for the used glass and silica
substrates and deposited pure thin film SnO ₂ 71
Fig. (28 - a & b) The measured transmittance and reflectance
spectra for SnO ₂ : F (a) 0.4 M and (b) 0.8 M75
Fig. (29-a) The values of (R & T) at wavelength
2500 nm as a function of fluorine concentration
for SnO ₂ : F (0.4 M)
Fig (29 -b) The values of (R & T) at wavelength
2500 nm as a function of fluorine concentration
for SnO ₂ : F (0.8 M)
Fig (30- a) Effect of deposition time at constant temperature
450 °C on the band gap80
Fig. (30- b) Effect of substrate temperature at constant time
20 min. on the band gap80
Fig. (31- a & b) The variation of refractive index value
with wavelength for SnO ₂ samples
(a) 450°C at different deposition time and
(b) 20 minutes at different substrate temperature86
Fig. (32) The variation of refractive index value with
wavelength for SnO ₂ : F (0.4 M) samples
at different fluorine concentrations87
Fig. (33) The variation of refractive index value
with wavelength for SnO ₂ : F (0.8 M) samples
at different fluorine concentrations87
Fig. (34) The effect of deposition time and substrate

temperature on film thickness for SnO ₂ 89)
g. (35)The change in film thickness with fluorine concentration9	C
g. (36) The change in the sheet resistance and	
Reflectance % at 2500 nm as Fluorine	
Concentration for SnO ₂ : F (0.8 M)93	;
g. (37) The change in the sheet resistance as Fluorine	
concentration for SnO ₂ : F at (0.4 M) & (0.8 M)93	
g.(38) The 2-D AFM image for SnO ₂ : F (0.8 M)	
(a) 0 % F, (b) 5 % F, (c) 10 % F, (d) 15 % F,	
(e) 20 % F, (f) 25 % F9	6
g. (39) The 3-D AFM image for SnO ₂ : F (0.8 M)	
(a) 0 % F, (b) 5 % F, (c) 10 % F, (d) 15 % F,	
(e) 20 % F, (f) 25 % F9	7