Comparison of two instrumentation techniques on stress distribution and fracture susceptibility of curved root canals (Finite element study)

Thesis
Submitted to the Faculty of Dentistry,
Ain Shams University

For

Partial fulfillment of requirements of the master degree in Endodontics

By

Mohamed Hisham Kamal Taha

B.D.S. (Faculty of dentistry, Ain Shams University,2003)

2010

Supervisors

Prof.Dr.Salma Hassan Elashry

Professor of endodontics Endodontic department, Faculty of dentistry, Ain Shams University

Dr.Shehab Eldeen M.Saber

Lecturer of endodontics Faculty of dentistry, Ain Shams University

أعوذ بالله من الشيطان الرجيم

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إلاَّ مَا عَلَمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ عَلَمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم

سورة البقرة – الاية ٣٢

Dedication

To my Lovely Mother

(For her spiritual support, may Allah bless her in his heaven)

To my Dearest Father

To my sweet Sisters

<u>Acknowledgement</u>

I would like to express my deep gratitude to **Professor Doctor Salma Hassan Elashry**Professor of Endodontics, Faculty of Dentistry, Ain Shams University

For her valuable guidance and effort throughout my academic and clinical work.

My sincere gratitude to Dr. *Shehab Eldeen M.Saber*Lecturer of endodontics, Faculty of dentistry, Ain Shams
University
For his sincere help and co operation during this study.

I would like to express my great thanks to *Dr. Ahmed Elragi*, Lecturer of Civil Engineering, Fayoum University for his cooperation and guidance in a very generous manner.

My deep appreciation to *Professor Doctor Hossam*Tawfik, Chairman of endodontic department, and all the staff & members of the endodontic department, Faculty of dentistry, Ainshams university for their valuable help and co operation.

List of Contents

Introd	uction1	
Revie	w of literature3	
0	Instrumentation techniques and shaping ability3	
0	Finite element analysis10	
0	Fracture resistance23	
Aim o	of the study32	
Mater	ials and methods33	
0	Finite element analysis40	
0	Fracture resistance	
Resul	ts57	
0	Finite element analysis results57	
0	Fracture resistance results100	
Discu	ssion110	
Sumn	nary and Conclusion121	
References		
Arabi	c summary	

List of Figures

Figure 1	Computed Tomography Machine	41
Figure 2	a- CT of the four teeth in mesio-dital direction.b- CT of the four teeth in bucco-lingual direction.c- CT of the four teeth in coronal direction.d- Four dried teeth 3D picture.	43
Figure 3	a- CT of one tooth in mesio-dital direction.b- CT of one tooth in bucco-lingual direction.c- CT of one tooth in coronal direction.d- 3D model of one tooth.	43
Figure 4	Remeshing procedure.	44
Figure 5	Model areas of the tooth and MB canal.	46
Figure 6	Model areas of the tooth and bone cylinder.	46
Figure 7	Model volumes of the tooth.	46
Figure 8	Model volumes of the tooth and bone cylinder.	46
Figure 9	SOLID72 3D – 4Node tetrahedral Structural Solid with rotation.	47
Figure 10	Load application site (central fossa)	48
Figure 11	Model nodes with solid base in last 3 layers	48
Figure 12	Showing shear stress in MPa within the tooth Model 2 group 2A under loading with the spectrum of colors.	51
Figure 13	Showing compressive stress in MPa within the tooth Model 2 group 2A under loading with the spectrum of colors.	51
Figure 14	The sample holder and the prefabricated copper ring.	52
Figure 15	Top view of the root refixed in the acrylic block by light body impression material.	53
Figure 16	The loading fixture.	54
Figure 17	The fractured root.	55
Figure 18	Loading the sample in the testing machine.	55

Figure 19	The load deformation curve of a sample from group 1A showing a value of force equal (76.4 N).	53
Figure 20	Bar chart showing the highest tensile stresses on the tooth in MPa for all groups.	58
Figure 21	Showing tensile stress within the tooth Model 4 group 2B under loading.	59
Figure 22	Showing tensile stress within the tooth Model 3 group 1B under loading.	59
Figure 23	Showing tensile stress within the tooth Model 1 group 1A under loading.	60
Figure 24	Showing tensile stress within the tooth Model 2 group 2A under loading.	60
Figure 25	Bar chart showing the highest compressive stresses on the tooth in MPa for all groups.	61
Figure 26	Showing compressive stress within the tooth Model 4 group 2B under loading.	62
Figure 27	Showing compressive stress within the tooth Model 3 group 1B under loading.	62
Figure 28	Showing compressive stress within the tooth Model 1 group 1A under loading.	63
Figure 29	Showing compressive stress within the tooth Model 2 group 2A under loading.	63
Figure 30	Bar chart showing the highest shear stresses on the tooth in MPa for all groups.	64
Figure 31	Showing intensity stress within the tooth Model 4 group 2B under loading.	65
Figure 32	Showing intensity stress within the tooth Model 3 group 1B under loading.	65
Figure 33	Showing intensity stress within the tooth Model 1 group 1A under loading.	66
Figure 34	Showing intensity stress within the tooth Model 2 group 2A under loading.	66
Figure 35	Bar chart showing the highest von Mises' stresses on the tooth in MPa for all groups.	67
Figure 36	Showing von Mises' stress within the tooth Model 4 group 2B under loading.	68
Figure 37	Showing von Mises' stress within the tooth Model 3 group 1B under loading.	68
Figure 38	Showing von Mises' stress within the tooth Model 1 group 1A under loading.	69

Figure 39	Showing von Mises' stress within the tooth Model 2 group 2A under loading.	69
Figure 40	Bar chart showing the highest tensile, compressive, shear	71
118010 .0	and von Mises' stresses on the tooth model in MPa for all	, -
	groups.	
Figure 41	Bar chart showing the highest tensile stresses on the	72
C	mesiobuccal canal in MPa for all groups.	
Figure 42	Showing tensile stress within the mesiobuccal canal of	73
_	Model 1 group 1A under loading.	
Figure 43	Showing tensile stress within the mesiobuccal canal of	73
_	Model 2 group 2A under loading.	
Figure 44	Showing tensile stress within the mesiobuccal canal of	74
	Model 3 group 1B under loading.	
Figure 45	Showing tensile stress within the mesiobuccal canal of	74
	Model 4 group 2B under loading.	
Figure 46	Bar chart showing the highest compressive stresses on	75
	the mesiobuccal canal in MPa for all groups.	
Figure 47	Showing compressive stress within the mesiobuccal	76
	canal of Model 1 group 1A under loading.	
Figure 48	Showing compressive stress within the mesiobuccal	76
	canal of Model 3 group 1B under loading.	
Figure 49	Showing compressive stress within the mesiobuccal	77
	canal of Model 4 group 2B under loading.	
Figure 50	Showing compressive stress within the mesiobuccal	77
	canal of Model 2 group 2A under loading.	
Figure 51	Bar chart showing the highest shear stresses on the	78
	mesiobuccal canal in MPa for all groups.	
Figure 52	Showing intensity stress within the mesiobuccal	79
T: 50	canal of Model 4 group 2B under loading.	
Figure 53	Showing intensity stress within the mesiobuccal canal of	79
T: 54	Model 1 group 1A under loading.	00
Figure 54	Showing intensity stress within the mesiobuccal canal of	80
T:	Model 2 group 2A under loading.	00
Figure 55	Showing intensity stress within the mesiobuccal canal of	80
F: 56	Model 3 group 1B under loading.	0.1
Figure 56	Bar chart showing the highest von Mises' stresses on the	81
F: 57	mesiobuccal canal in MPa for all groups.	0.2
Figure 57	Showing von Mises' stress within the mesiobuccal canal	82
	of Model 1 group 1A under loading.	

Figure 58	Showing von Mises' stress within the mesiobuccal canal of Model 2 group 2A under loading.	82
Figure 59	Showing von Mises' stress within the mesiobuccal	83
8	canal of Model 4 group 2B under loading.	
Figure 60	Showing von Mises' stress within the mesiobuccal canal	83
C	of Model 3 group 1B under loading.	
Figure 61	Bar chart showing the highest tensile, compressive, shear	85
C	and von Mises' stresses on the mesiobuccal canal model	
	in MPa for all groups.	
Figure 62	Bar chart showing the highest tensile stresses on the bone	86
	cylinder in MPa for all groups.	
Figure 63	Showing tensile stress within bone cylinder surrounding	87
	the roots of Model 4 group 2B under loading.	
Figure 64	Showing tensile stress within bone cylinder surrounding	87
	the roots of Model 1 group 1A under loading.	
Figure 65	Showing tensile stress within bone cylinder surrounding	88
	the roots of Model 3 group 1B under loading.	
Figure 66	Showing tensile stress within bone cylinder surrounding	88
	the roots of Model 2 group 2A under loading.	
Figure 67	Bar chart showing the highest compressive stresses on	89
- .	the bone cylinder in MPa for all groups.	
Figure 68	Showing tensile stress within bone cylinder surrounding	90
F' 60	the roots of Model 1 group 1A under loading.	0.0
Figure 69	Showing compressive stress within bone cylinder	90
	surrounding the roots of Model 4 group 2B under	
Figure 70	loading. Showing compressive stress within hone cylinder	01
Figure 70	Showing compressive stress within bone cylinder surrounding the roots of Model 3 group 1B under	91
	loading.	
Figure 71	Showing compressive stress within bone cylinder	91
riguic / r	surrounding the roots of Model 2 group 2A under	71
	loading.	
Figure 72	Bar chart showing the highest shear stresses on the bone	92
115010 / 2	cylinder in MPa for all groups.	
Figure 73	Showing intensity stress within bone cylinder	93
8	surrounding the roots of Model 4 group 2B under	
	loading.	
Figure 74	Showing intensity stress within bone cylinder	93
=	surrounding the roots of Model 1 group 1A under	
	loading.	

Figure 75	Showing intensity stress within bone cylinder surrounding the roots of Model 3 group 1B under	94
	loading.	
Figure 76	Showing intesty stress within bone cylinder surrounding	94
	the roots of Model 2 group 2A under loading.	
Figure 77	Bar chart showing the highest von Mises' stresses on the	95
	bone cylinder in MPa for all groups.	
Figure 78	Showing von Mises' stress within bone cylinder	96
	surrounding the roots of Model 4 group 2B under	
	loading.	
Figure 79	Showing von Mises' stress within bone cylinder	96
	surrounding the roots of Model 1 group 1A under	
	loading.	
Figure 80	Showing von Mises' stress within bone cylinder	97
	surrounding the roots of Model 3 group 1B under	
	loading.	
Figure 81	Showing von Mises' stress within bone cylinder	97
	surrounding the roots of Model 2 group 2A under	
	loading.	
Figure 82	Bar chart showing the highest tensile, compressive, shear	99
	and von Mises' stresses on the bone cylinder model in	
	MPa for all groups.	
Figure 83	Bar chart showing the Mean force in Newtons required	100
	to fracture the roots of the four subgroups.	
Figure 84	The deformation curve of a sample from group 1A	101
	showing the maximum value of force (86.7 N).	
Figure 85	The deformation curve of a sample from group 1A	102
	showing the minimum value of force equal (61 N).	
Figure 86	The deformation curve of a sample from group 2A	102
	showing the maximum value of force (98.1 N).	
Figure 87	The deformation curve of a sample from group 2A	103
	showing the minimum value of force (31.5 N).	
Figure 88	The deformation curve of a sample from group 1B	104
	showing the maximum value of force (83 N).	
Figure 89	The deformation curve of a sample from group 1B	104
	showing the minimum value of force equal (43.2	
	N).	
Figure 90	The deformation curve of a sample from group 2B	105
	showing the maximum value of force equal (83.5 N).	

List of Figures

Figure 91	The deformation curve of a sample from group 2B showing the minimum value of force equal (44 N).	105
Figure 92	Bar chart showing fracture patterns for the samples of all groups.	107
Figure 93	Sample from group 1A showing bucco lingual fracture pattern.	108
Figure 94	Sample from group 2A showing compound fracture pattern.	108
Figure 95	Sample from group 2B showing compound fracture pattern with apex fracture.	109

List of Tables

Table 1	The factorial design of the study.	36
Table 2	Protaper universal system: instruments sequence, tip diameter, taper and depth of penetration.	38
Table 3	Summary of scan parameter.	41
Table 4	Material properties.	47
Table 5	Showing all types of stresses induced in the tooth models with their highest magnitudes in MPa for all groups.	70
Table 6	Showing all types of stresses induced in the mesiobuccal canal models with their highest magnitudes in MPa for all groups.	84
Table 7	Showing all types of stresses induced in the bone cylinder models with their highest magnitudes in MPa for all groups.	98
Table 8	The maximum, the minimum, the mean value (measured in Newton) and standard deviation required for root fracture for all groups.	100
Table 9	Fracture patterns for the samples of all groups.	107

Root fracture is an important clinical problem leading to extraction or root amputation. It has been observed clinically that root fracture occurs commonly in endodontically treated teeth. Endodontic procedures have been blamed as a frequent cause of root fracture. Numerous experimental studies have challenged this conclusion.

Although root fracture of endodontic origin is an infrequent event, the consequent tooth loss makes it a significant clinical concern. Factors predisposing to root fracture have been investigated using a variety of experimental approaches and are now reasonably well understood. Whilst many variables are outside the control of the clinician (natural root morphology, canal shape and size, dentine thickness), other factors can be addressed during treatment to reduce fracture susceptibility. These factors include final canal shape, extent of canal enlargement, and elimination of irregularities that serve as sites of stress concentration.

Dentin of endodontically treated teeth does not exhibit mechanical properties that are significantly different from those of vital teeth. It has been shown that access cavity preparation has non-significant effects on tooth stiffness. The load generated during lateral condensation is generally far lower than the load required to fracture the roots. Thus, obturation should not be regarded as a major cause of root fracture except in very weak roots.

On the other hand, Cleaning and shaping involves dentin removal which might compromise the fracture strength of the prepared roots.

The introduction of rotary nickel-titanium (Ni-Ti) instruments for canal preparation has changed canal shape, size, and taper compared to hand instrumentation. Canal shape after preparation with hand files can be quite irregular .From a fracture

mechanics point of view, the presence of structural defects, cracks, or canal irregularities is likely to play a major role in determining fracture resistance. With rotary NiTi preparation, canal shapes are more likely to be rounder and smoother.

Experimental fracture studies using extracted teeth are plagued by a wide variability within groups, which makes it difficult to demonstrate statistically significant effects of treatment procedures. On the other hand, numerical methods such as finite element analysis offer considerable advantages in the systematic investigation of experimental variable.

Carefully constructed models can provide valuable insights into patterns and mechanisms of clinical failure.

Therefore conducting a study for comparison of two instrumentation techniques on stress distribution and fracture susceptibility of curved root canals was thought to be of value.