

Ain Shams University Women's College for Arts, Science and Education Physics Department

Studies and Applications on Neutron Capture (n, γ) using k_0 -Method

Thesis
Submitted in the partial Fulfillment
For M. Sc. Degree in Physics
To
Physics Department
Women's College for Arts, Science and Education
Ain Shams University
By

B. Sc. in Physics, 2003

Supervisors

Prof. Dr.Amany Taha Sroor
Prof. of Nuclear Physics
Women's College for Arts,
Science and Education
Ain Shams University

Prof. Dr. Nadia Walley El-Dine
Prof. of Nuclear Physics
Women's College for Arts,
Science and Education
Ain Shams University

Dr. Nabiha Farag Soliman Ass. Prof. of Nuclear Research Center Atomic Energy Authority Egypt

Ain Shams University Women's College for Arts, Science and Education Physics Department

A Thesis for M.Sc in Physics Tahra El sayed Mohammed Salim

Title of thesis

Studies and Applications on Neutron Capture (n, γ) using k_0 -Method

Thesis Supervisors

Prof. Dr.Amany Taha Sroor
Prof. of Nuclear Physics
Women's College for Arts,
Science and Education
Ain Shams University

Prof. Dr. Nadia Walley El-Dine Prof. of Nuclear Physics Women's College for Arts, Science and Education Ain Shams University

Dr. Nabiha Farag Soliman Ass. Prof. of Nuclear Research Center Atomic Energy Authority Egypt

Date of Research: / /2010 Date of Approval: / /2010

Approval Stamp:

Approval of Faculty Council: / /2010

Approval of University Council: / /2010

Ain Shams University
Women's College for Arts,
Science and Education
Physics Department

Student name: Tahra El Sayed Mohammed Salim

Scientific degree: master in Physics

Department: Physics Department

College: Women's college for Arts, Science and

Education

University: Ain Shams University

Date of graduate: Bachelor Science in Physics

and Computer Science 2003.

Date of granted: M.Sc in Physics 2010.

Ain Shams University Women's College for Arts, Science and Education Physics Department

Acknowledgments

First of all, I kneel humbly to **GOD**, thanking him for showing the right path. With his help, my efforts would have gone astray.

I wish to express my deepest appreciation to **Prof. Dr. Amany Taha Sroor**, Professor of Nuclear physics, Ain Shams University, Women's College for Arts, Science and Education, for his supervision and planning the work, fruitful discussion and careful guidance and valuable discussion.

Particular gratitude and heartily thanks to **Prof. Dr. Nadia Walley El-Dine**, Professor of Nuclear physics, Ain Shams University, Women's College for Arts, Science and Education, for the excellent supervision, stimulating suggestions, fruitful discussion and valuable revision.

Wording is not enough to express my sincere respect and cordial gratitude to **Dr. Nabiha Farg Soliman**, Associate Professor of Atomic Energy Authority, for suggesting the topic of the study, kind supervision, sincere help, faithful guidance, valuable suggestions, encouragement, continuous constructive discussion and assistance during the course of research.

Special thanks for **Prof. Dr. Sofia Yahia Afifi Mohammed,** Professor of Geochemistry, Nuclear Materials Authority and **Prof. Dr. Soher Abd El latef**, Professor of Hematology, The National Cancer Institute.

I am also very grateful and owe an immeasurable debt to **Prof. Dr. Amera Al dakrore,** Head of Physics Department for her continuous encouragement and facilitating all the official affairs to complete this thesis.

Last, but not least, my deepest thanks and gratitude to all the staff members of Physics Department, Women's College for Arts, Science and Education, Ain Shams University. Finally, I want to express my best thanks to all those helped me directly or indirectly to finish this work and everyone reads it.

Tahra El Sayed.

Studies and Applications on Neutron Capture (n, γ) using k_0 -Method

The thesis aimed to throw some light on studies of Neutron Activation Analysis and its related applications.

The applications are directed to geological and biological applications.

Firstly, the second Egyptian Research Reactor ET-RR-2 (Inchass, Egypt) was used to irradiate six geological samples from Wady sitra at Eastern Desert of Egypt together with a group of standard samples of Mo, Fe, Sb and W. The irradiation time is three hours at the reactor core. A Hyper Pure Germanium (HPGe) detection system was used for the measurements of the gammarays emitted. Mo, Fe, Sb standard were used to measure the neutron spectrum parameters α (epithermal non-ideality factor) and f (the thermal to epithermal flux ratio) while W was used to test the obtained result. The parameters α and f were measured by using the so-called bare triple monitor method, and the obtained results was found to be $f = 17.5 \pm 0.35$ and $\alpha = -0.03 \pm 0.002$. A FORTRAN computer program is designed and used to calculate the values of Q_0 (α) for the analyzed elements.

As a result of the complete analysis of the data obtained, k_0 neutron activation techniques (k_0 -NAA) is used to estimate the elemental concentrations

Secondly, 17 blood samples (11 Breast),(2 Prostate),(2 Colon),(1 Pancreatic), (1 Ovarian) from the National Cancer Institute of Egypt at Cairo and one sample from random person are using to estimate the concentration values of Na, Mg, Al,

Cl, Mn, K , Br, and Ca. The pneumatic irradiation rabbit system (PIRS) built in the vertical thermal column of the ET-RR-2 reactor is used for short time irradiation at 19 MW power. The irradiation time between 60 and 180 second. For sake of comparison, the elemental concentrations of the random sample using (k_0 - NAA) compared with the concentrations obtained by (ICP-MS) technique.

Elemental concentrations were estimated from measurements of the gamma ray spectra of the product short lived isotopes in the samples. The thermal to epithermal neutron flux ratio was calculated (f=196) at irradiation position. The obtained concentration was calculated using k_0 -standardization method.

FORTRAN program and EXCEL sheet were constructed and used for the determination of the neutron flux ratio and for the determination of elemental concentration values

Contents

Acknowledgment	
Abstract	I-II
Contents	I-IV
List of Figures	I-III
List of Tables	I-II

Chapter I Introduction and Literature Review

Contents	Page
1.1 Neutron Activation Analysis	1
1.2 Basic Principles	1
1.3 Review of k ₀ Standardization Method	2
1.4 General Remarks on Gamma-ray	3
Spectroscopy and Neutron Activation Analysis	
1.4.1 Gamma-Ray Spectroscopy	3
Passive Measurements	3
Active Measurements	4
1. Prompt Gamma NAA (PGNAA)	5
2. Delayed Gamma NAA (DGNAA)	5
1.5 Advantages, Disadvantages and Mechanisms of Neutron Activation Analysis (NAA)	7

Contents	Page
1.6 Gamma-Ray Interference Problems	9
1.7 Accuracy in Neutron Activation analysis	10
1.8 Brief Review on NAA	12
1.9 Brief Review of Previous Work on k ₀ -method	14
1.10 Aim of the Present Work	22

Chapter II Basic Theoretical Aspects

contents	Page
	24
2.1 Introduction	
2.2 Methods of Elemental Concentration Calculations	24
2.2.1 Absolute Method	24
2.2.2 Relative Method	26
Reference Material	27
2.2.3 k ₀ - Standardization Method	28
2.3Thermal and Epithermal Neutron Activation Equatio	n 29
2.4 The Sensitivity Concept in DGNAA and its Factors	32
2.5 The Relation between Sensitivity-Factor and k ₀ -	34
Standardization	
	35
2.6 Measurements and Evaluation of k ₀	36
2.7 Parameters of the k_0 -Method (α)	36
1. Cd-covered multi-monitor Method	37
2. Cd ratio for multi-monitor Method	37
3. Bare multi-monitor Method	

Method

Chapter III

Experimental Techniques and Calibration of Spectrometer

contents	Page
3.1 Irradiation Facilities 3.1.1The Second Egyptian Research Reactor (ET-RR-2) 3.1.2 Pneumatic Irradiation Rabbit Transfer System (PIRS)	38 38 40
3.2 Inductively Coupled Plasma Mass Spectrometer (ICP-Ms)	41
3.3 Camma_Ray dataction system	42
3.3 Gamma-Ray detection system 3.3.1 Hyper pure Germanium Detector	
Details of the used Systems	44
3.4 The Calibration Curves of the used Detection System	45
3.4.1Energy Calibration	46
3.4.2Efficiency Calibration	49
Chapter IV	
Results and Discussion	
contents	Page
4.1 Results of Geological Samples from Wady Sitra at Eastern Desert Egypt using k ₀ -Neutron Activation	52

contents	Page
111 Samples Dranavation and Irradiation	55
4.1.1 Samples Preparation and Irradiation	56
4.1.2 Determination of Reactor parameters	58
4.1.3 Determination of $Q_0(\alpha)$	00
4.2 Elemental concentration of Geological Samples	60
Rare Earth Elements (REEs)	77
4.3 A short Account about Rare Earth Elements	78
4.4 Qualitative and Quantitative Analysis of Whole Blood Samples	82
4.4.1 Introduction	82
4.4.2 Collection and Preparation of the Blood Samples	82
4.4.3 Neutron Activation	83
Constant	104
Conclusion	108
References	I-IV
Arabic Summary	'

List of Tables

Tables	P	age
Table (3.1):	Data Systems of the 1^{st} and 2^{nd} HPGe γ -ray Spectrometer Systems used in the Present Work.	45
Table (3. 2)	Gamma-ray Energies of the Radioactive Sources use for Energy Calibration for Geological Samples.	d 47
Table (3.3):	Gamma-ray Energies of the Radioactive Sources use for Energy Calibration for Biological Samples.	d 48
Table (3.4):	Gamma-ray Energies of the Standard Radioactive Sources Used for Efficiency Calibration of Geologica Samples.	50 I
Table (3.5):	Gamma-ray Energies of the standard Radioactive Sources used for Efficiency Calibration of Biological Samples.	51
Table (4.1):	A Portion from The results f and α Determination for Different Combinations of Pairs of Three Isotopes.	_r 57
Table (4.2)	: The Values of Q_0 (α) for All isotopes Present in the Samples under Investigation.	59
Table (4.3)	: Comparison between Measured and Certificated Values of Tungsten Standard Sample Concentration.	l ⁶⁰
Table (4.4)	The Elemental Concentrations Values of the Six Samples from Central Eastern Desert of Egypt (ppm).	73

Tables	Page	
Table (4.5): List of Elemental Concentration of Sample 11 using α =0 and α =-0.03.	4a	76
Table (4.6): Concentration of Rare Earth Elements (ppm).	•	77
Table (4.7): A Report of the Nuclear Constants for All Isotopes under Investigation.		84
Table (4.8): The Elemental Concentration of Random Blood Sample using (k ₀ .NAA) and (ICP-MS) Techniques.		85
Table (4.9): The Concentration in ppm of Blood Sample from Breast Cancer Patients.		87
Table (4.10): The Concentration in mg\kg of the Colon Ca	ncer	90
Table (4.11): The Concentration in mg\kg Prostate Cancer	ſ .	92
Table (4.12): The Concentration in mg\kg of Pancreatic Cancer.		94
Table (4.13): The Concentration in mg\kg of Ovarian Cancer.		96
Table (4.14): The Concentration Ranges in mg\kg for all Blood Samples.		97

List of Figures

Figures	Page
Fig. (1.1): A nuclear Projectile Interacting with a Target Nucleus.	6
Fig. (3.1): View of the Second Egyptian Training and Research Reactor (ET-RR-2).	39
Fig. (3.2): View of Pneumatic Irradiation Rabbit System	41
Fig. (3.3): Basic Instrumental Components of JEOL JMS- PlasmaX2 HRICP-MS.	42
Fig. (3.4): The Electronic Block Diagram of HPGe Detector.	44
Fig. (3.5): Energy Calibration Curve used for Geological Samples Analysis.	47
Fig. (3.6): Energy Calibration Curve used for Biological Samples Analysis.	48
Fig. (3.7): Efficiency Curve for Geological Samples Analysis.	50
Fig. (3.8): Fitting Efficiency Calibration Curve for Blood Samples Analysis.	51
Fig. (4.1): Shows the Position of Gold Mining at Eastern Desert.	54
Fig. (4.2): Shows the Position of Wady Sitra.	55
Fig. (4.3): The dependence of Thermal to Epithermal Neutron Flux Ratio f on the Deviation Alpha of the Neutron Energy Power from the Ideal 1/E Epithermal.	58