MODELING FOR MAXIMIZING LOW QUALITY WATER USE MANAGEMENT UNDER EGYPTIAN CONDITIONS

AMR KHAIRY MAHMOUD ABD EL-WAHAB

B. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 1997 M. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Agricultural Mechanization)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

MODELING FOR MAXIMIZING LOW QUALITY WATER USE MANAGEMENT UNDER EGYPTIAN CONDITIONS

By

AMR KHAIRY MAHMOUD ABD EL-WAHAB

B. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 1997 M. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 2003

Under the supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ahmed Mohamed El-Araby

Prof. Emeritus of Soil Science, Department of Soil, Faculty of Agriculture, Ain Shams University

Dr. Mostafa Hassan El-Dosouky

Research Prof. Emeritus of Water Requirements and Meteorology, Department of Chemical and Soil Physics, Desert Research Center

Approval Sheet

MODELING FOR MAXIMIZING LOW QUALITY WATER USE MANAGEMENT UNDER EGYPTIAN CONDITIONS

AMR KHAIRY MAHMOUD ABD EL-WAHAB

B. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 1997 M. Sc. Agric.Sc. (Agric. Mech.), Ain Shams University, 2003

This thesis for Ph.D. degree has been approved by:

Dr.	Diaa El-Din Ahmed El-Quosy	•••••
	Research Prof. Emeritus of Irrigation Engineerin	g, National Water
	Research Center	
Dr.	Mahmoud Mohamed Hegazy	•••••
	Prof. Emeritus of Agricultural Engineering, Facu	ılty of Agriculture
	Ain Shams University	
Dr.	Ahmed Mohamed El-Araby	•••••
	Prof. Emeritus of Soil Science, Faculty of Agrico	ulture,
	Ain Shams University	
Dr.	Abdel-Ghany Mohamed El-Gindy	•••••
	Prof. Emeritus of Agricultural Engineering, Facu	ılty of Agriculture
	Ain Shams University	

Date of Examination: / /2010

نمذجة الادارة لتعظيم استخدامات مياه الري منخفضة الجودة تحت الظروف المصرية

عمرو خيرى محمود عبد الوهاب

بكالوريوس علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 1997 ماجستير علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 2003

لوم الزراعية (ميكنة زراعية)

> قسم الهندسة الزراعية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

نمذجة الادارة لتعظيم استخدامات مياه الري منخفضة الجودة تحت الظروف المصرية

رسالة مقدمة من

عمرو خيري محمود عبد الوهاب

بكالوريوس علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 1997 ماجستير علوم زراعية (ميكنة زراعية) ، جامعة عين شمس ، 2003

للحصول على درجة دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

اللجنة:

هندسة الري المتفرغ ، المركز القومي للبحوث المائية

أستاذ الهندسة الزراعية المتفرغ ، كلية الزراعة ، جامعة عين شمس

كلية الزراعة ، جامعة عين شمس

كلية الزراعة ، جامعة عين شمس

أستاذ الهندسة الزراعية المتفرغ ، كلية الزراعة ، جامعة عين شمس

تاريخ المناقشة: 26 / 5 / 2010

وقد تمت مناقشة الرسالة والموافقة عليها

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

اسم الطالب: عمرو خيري محمود عبد الوهاب

عنوان الرسالة : دارة لتعظيم استخدامات مياه الري منخفضة

الظروف المصرية

اسم الدرجة : دكتور فلسفة في العلوم الزراعية (ميكنة زراعية)

لجنة الإشراف:

د. عبد الغنى محمد الجندى

أستاذ الهندسة الزراعية المتفرغ ، قسم الهندسة الزراعية ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. أحمد محمد العربي

أستاذ الأراضي المتفرغ ، قسم الأراضي ، كلية الزراعة ، جامعة عين شمس

د. مصطفى حسن الدسوقى

أستاذ باحث الإحتياجات المائية والارصاد المتفرغ ، قسم الكيمياء وطبيعة الأراضي ، مركز بحوث الصحراء

تاريخ البحث ١١ / ٢٠٠٨ / ٢٠٠٨ الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ موافقة مجلس الكلية م

ABSTRACT

Amr Khairy Mahmoud Abd El-Wahab: Modeling for Maximizing Low Quality Water Use Management under Egyptian Conditions. Unpublished Ph.D. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2010.

The shortage of good quality water resources is becoming an important issue in the arid and semi-arid zones. For this reason, the availability of water resources of marginal quality such as saline groundwater has become an important consideration. Nevertheless, the use of this water to irrigate lands has different effects on irrigation systems efficiency. Thus, the work aimed to test the influence of using three levels of saline water under two irrigation systems (trickle and minisprinkler) using three amounts of water on localized irrigation efficiency ratio of clogging, absolute emission Uniformity and the irrigation water use efficiency]. Calendula officinalis L. and Achillea millefolium L. were used as test crops; also, invent a regression models to connect all parameters. Results indicated that values of Clogging Ratio under trickle irrigation system using high saline water are higher compared to the minisprinkler's values by 4.8, 5.7 and 2% respectively with water quantities. Moreover, the value for the Absolute Emission Uniformity under minisprinkler system is higher than the trickle irrigation's value by 3% using high saline water under low quantity of water; but with others quantities there are not any significant change at values. The mean average yield under trickle irrigation was higher than the mini-sprinkler irrigation by 31.15% for Calendula and 57.5% for Achillea. Eventually, the irrigation water use efficiency under drip irrigation using high saline water was lower than low saline water by 23.5% for Calendula and by 25% for Achille when using the third amount of water. In addition, soil salinity increased when using mini-sprinkler more than trickle irrigation system

Key Words:

Low quality water, Modeling, Efficiency, Saline soil and yield productivity.

CONTENTS

		Page
	TABLES FIGURES	iii
INTROD		iv
INTROD	CHON	1
REVIEW	OF LITERATURE	4
2.1. Water	quality for agricultural	4
2.2. Water	quality problems	6
2.3. Guide	line for using low quality water in irrigation	8
2.4. Irrigat	tion with saline water	8
2.4.1.	Saline water and irrigation methods	12
2.4.2.	Saline water and crops	17
2.4.3.	Saline water and soil	25
2.5. Mode	ling and its applications in agricultural.	27
2.6. Saline	e water management.	29
MATERI	AL AND METHODS.	32
3.1. Exper	iment site	32
3.2. Treatr	nents	32
3.2.1.	Irrigation Systems	32
3.2.2.	Irrigation system networks	35
3.2.3.	Medical herb	35
3.	2.3.1. Calendula officinalis	35
3.	2.3.2. Achillea millefolium	37
3.2.4.	Crop water requirements and water quantities	37
3.3. Meası	urements and calculations.	41
3.3.1.	Absolute emission uniformity (EUa)	41
3.3.2.	Clogging ratio (CR)	42
3.3.3.	Irrigation water use efficiency (IWUE)	43
3.3.4.	Soil analysis	43
3 '	3.4.1 Particle size distribution	11

3.3.4.2. Bulk density of soil	44
3.3.5. Statistical analysis for modeling	47
3.3.5.1. Multiple regression models	47
RESULT AND DISCUSSION	49
4.1. Influence of using gradient saline water on irrigation	49
systems performance	
4.1.1. Clogging ratio (CR)	49
4.1.2. Absolute emission uniformity (EUa)	54
4.2. Effect using different saline water levels on	58
distribution salinity with trickle irrigation system.	
4.3. Effect using different saline water on distribution	64
salinity with mini-sprinkler irrigation system.	
4.4. Comparison between tickle and mini-sprinkler	67
irrigation systems on distribution salinity.	
4.5. Influence of different saline water levels and quantities	72
on yield under different irrigation systems.	
4.6. Influence of different saline water levels and quantities	78
on irrigation water use efficiency (IWUE) under	
different irrigation systems.	
SUMMARY AND CONCLUSION	83
REFERENCE	89
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Guidelines for interperpration of water quality for irrigation	9
2	Crop tolerance and yield potential of selected crops as influenced by irrigation water salinity (ECw) or soil salinity (ECe).	19
3	Some chemical characteristic for the different irrigation water qualities.	34
4	Climate and ETo data using CropWat software program	39
5	Net irrigation water requirements report for Achillea using CropWat	41
6	Net irrigation water requirements report for Calendula using CropWat	41
7	System classifications according to Emission Uniformity values (EU)	42
8	Some chemical characteristic for the experimental site.	44
9	Particle size distribution for the experimental site	45
10	Some physical properties for the experimental site	45
11	Data analyzed using ANOVA split-split plot for Clogging ratio	51
12	Data analyzed using ANOVA split-split plot for emission uniformity	56
13	Data analyzed using ANOVA split-split plot for Achillea millefolium L	74
14	Data analyzed using ANOVA split-split plot for <i>Calendula Officinalis L</i>	74
15	Relationship between irrigation water use efficiency (IWUE) and irrigation water salinity under different irrigation systems and crops	82

LIST OF FIGURES

Figure		Page
1	Divisions for relative salt tolerance ratings of agricultural crops	18
2	Relationship between applied water salinity and soil water salinity at different leaching fractions	31
3	Layout for experimental design	33
4	Components for irrigation network systems	36
5	Placement for soils layers under different irrigation systems	46
6	Influence of use different water types on clogging ratio under different irrigation systems after one year.	50
7	Comparison among trickle and mini-sprinkler which affected by clogging ratio after one year	51
8	Illustrate the Duncan's Multiple Range Test at a Significance level (0.05) for different factors [water treatment – Irr.Systems – amounts of water] on clogging ratio	53
9	Comparison between trickle and mini sprinkler irrigation systems on absolute water emission uniformity using graded saline water	55
10	Illustrate the Duncan's Multiple Range Test at a Significance level (0.05) for different factors [water treatment – Irr.Systems – amounts of water] on emission uniformity.	57
11	Influence of different saline levels and quantities on (0-20cm) under trickle irrigation system	59
12	Influence of different saline levels and quantities on soil layer (20-40cm) under trickle irrigation system	60
13	Influence of different saline levels and quantities on soil layer (40-60cm) under trickle irrigation system	62
14	Influence of different saline levels and quantities on	63

	soil layer (40-60cm) under trickle irrigation system	
15	Influence of different saline levels and quantities on	65
	(0-20cm) under mini-sprinkler irrigation system	65
16	Influence of different saline levels and quantities on	66
	(20-40cm) under mini-sprinkler irrigation system	00
17	Influence of different saline levels and quantities on	68
	(40-60cm) under mini-sprinkler irrigation system	
	Influence of different saline levels and quantities on	
18	(60-80cm) under mini-sprinkler irrigation system.	69
	Influence of different saline water levels and	
19	quantities on soil salinity under trickle and mini-	71
	sprinkler irrigation systems	
	Effect of different saline water levels and quantities	
20	on Achillea millefolium L. using different irrigation	73
	systems	
	Effect of different saline water levels and quantities	
21	on Calendula officinalis L using different irrigation	73
	systems	
	Illustrate the Duncan's Multiple Range Test at a	
22	Significance level (0.05) for different factors [water	76
	treatment - Irr. Systems - amounts of water] on	70
	Achillea millefolium L yield response.	
	Illustrate the Duncan's Multiple Range Test at a	
23	Significance level (0.05) for different factors [water	77
	treatment - Irr. Systems - amounts of water] on	, ,
	Calendula officinalis L yield response	
	Relationship between irrigation water use efficiency	
24	(IWUE) and irrigation water salinity under different	80
	irrigation system for Achillea millefolium L	
	Relationship between irrigation water use efficiency	
25	(IWUE) and irrigation water salinity under different	81
	irrigation system for Calendula officinalis L	

ACKNOWLEDGMENT

First of all, thanks to Allah for his blessings.

The author wishes to express his sincere gratitude and appreciation to **Prof. Dr. Abdel-Ghany M. El-Gindy,** Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University for the suggesting of the problem and for his supervision throughout this work. The author is also grateful for his valuable discussions, suggestions, and helpful criticisms, which helped me to finalize this work.

The author wishes to express his gratitude and appreciation to **Prof. Dr. Ahmed Mohamed El-Araby**, Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University, for his kind supervision, and continuous guidance throughout this work. The author is also grateful for his valuable discussions criticisms, advises and careful revision of the final manuscript of the thesis.

The author also wishes to express his gratitude to **Prof. Dr. Mostafa Hassan El-Dosouky** Prof. Emeritus of Water, Requirement and Meteorology, Department of Chem. and Soil Physics, Desert Research Center., for his valuable advice, encouragement throughout this work and supervision of the work.

The author also would like to thank the staff members of the Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, and the Desert Research Center, DRC, for their cooperation and assistance during this work.