

Vasculoprotective Effect of Pioglitazone on Cyclosporine-Induced Vascular Damage in Rats

A Thesis

Submitted to the Faculty of Pharmacy
University of Alexandria
In Partial Fulfillment of the Requirements for the Degree

of **Master of Science**

in
Pharmaceutical Sciences
(Pharmacology)

by

Khaled Soliman Hamed

B.Sc. in Pharmaceutical Sciences, 2006 Faculty of Pharmacy University of Alexandria

Department of Pharmacology and Toxicology
Faculty of Pharmacy
University of Alexandria
2009

Vasculoprotective Effect of Pioglitazone on Cyclosporine-Induced Vascular Damage in Rats

A Thesis
For the Degree of Master of Science
in
Pharmaceutical Sciences (Pharmacology)

Presented by **Khaled Soliman Hamed**

B.Sci. in Pharmaceutical Sciences, 2006 Faculty of Pharmacy-University of Alexandria

EXAMINERS' COMMITTEE:	Approved	
Prof. Dr. Abdel Galil A. Abdel Galil Professor Emeritus of Pharmacology and Toxicology Faculty of Pharmacy, University of Alexandria		
Prof. Dr. Mahmoud M. El-Mas Chairman and Professor of Pharmacology and Toxicology Faculty of Pharmacy, University of Alexandria		
Prof. Dr. Azza E. Bistawroos Professor of Pharmacology and Toxicology Faculty of Pharmacy, University of Alexandria		
Prof. Dr. Mahmoud Mohamed Farag Chairman and Professor of Pharmacology Medical research institute, University of Alexandria		

Date / / 2009

SUPERVISORS' COMMITTEE:

Prof. Dr. Abdel Galil A. Abdel Galil Professor Emeritus of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria Prof. Dr. Mahmoud M. El-Mas Chairman and Professor of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria

Prof. Dr. Evan I. Saad

Professor of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria

Dr. Hanan M.S. El-Gowelli

Lecturer of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria

> Faculty of Pharmacy University of Alexandria 2009

SUPERVISORS

Prof. Dr. Abdel Galil A. Abdel Galil

Professor Emeritus of Pharmacology and Toxicology
Department of Pharmacology and Toxicology
Faculty of Pharmacy
University of Alexandria

Prof. Dr. Mahmoud M. El-Mas

Chairman and Professor of Pharmacology and Toxicology
Department of Pharmacology and Toxicology
Faculty of Pharmacy
University of Alexandria

Prof. Dr. Evan I. Saad

Professor of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria

Dr. Hanan M.S. El-Gowelli

Lecturer of Pharmacology and Toxicology Department of Pharmacology and Toxicology Faculty of Pharmacy University of Alexandria

> Faculty of Pharmacy University of Alexandria 2009

ACKNOWLEDGMENTS

First and foremost, thanks are due to ALLAH for supporting me throughout this work without which this thesis would have never come to completion.

I would like to express my profound gratitude and everlasting thanks to **Dr. Mahmoud El- Mas,** *Professor and Chairman, Pharmacology and Toxicology department, Faculty of Pharmacy, University of Alexandria* for his guidance and support, his patience and fatherly kindness and for dedicating much of his effort and time on this work without which thesis would have never been delivered in this form.

I feel greatly thankful to **Dr. Hanan El-Gowelli**, *Lecturer*, *Pharmacology* and *Toxicology department*, *Faculty of Pharmacy*, *University of Alexandria* for her assistance and encouragement during practical work and her effort in revising this thesis.

I wish to express my sincere appreciation to **Dr. Abdel Galil Ahmed Abdel Galil,** Professor, Pharmacology and Toxicology department, Faculty of Pharmacy, University of Alexandria and **Dr. Evan Ibrahim Saad**, Professor, Pharmacology and Toxicology department, Faculty of Pharmacy, University of Alexandria for their valuable suggestions, guidance and continuous help throughout work.

Also Thanks are due to **Dr. Neveen Eldeeb**, *Assistant professor*, *Pathology department*, *Faculty of Medicine*, *University of Alexandria* for helping me with histopathological examinations.

I would like also to convey my sincere thanks to all my colleagues and members of *Pharmacology and Toxicology department, Faculty of Pharmacy, University of Alexandria*. Special thanks are due to **Osama Harraz** and to **Dr. Mai Helmy**.

I am extremely indebted to my parents and my brother for their understanding, love and support throughout the whole work.

TABLE OF CONTENTS

			Page
LIST	Γ OF TABLE	ES	i
LIST	Γ OF FIGUR	RES	iv
1. R	EVIEW OF	LITERATURE	1
1.1.	Cyclosporia	ne A	1
	1.1.1.	General aspects	1
	1.1.2.	Cyclosporine A Chemistry and biosynthesis	1
	1.1.3.	Mode of the immunosuppressive action of cyclosporine	2
	1.1.4.	Adverse effects of cyclosporine	3
	1.1.4.1.	Cardiovascular and renal effects of cyclosporine	4
	1.1.4.1.1.	Cyclosporine-induced vascular toxicity	4
	1.1.4.1.2.	Cyclosporine-induced hypertension	4
	1.1.4.1.3.	Cyclosporine-induced nephrotoxicity	4
	1.1.4.2	Mechanisms involved in cyclsporine-induced vascular	5
		toxicity	
	1.1.4.2.1.	Effect of cyclosporine on sympathetic drive:	5
	1.1.4.2.2.	Effect of cyclosporine on endothelins	5
	1.1.4.2.3.	Effect of cyclosporine on prostaglandin	6
	1.1.4.2.4.	Effect of cyclosporine on the renin-angiotensin system	6
	1.1.4.2.5.	Cyclosporine-induced oxidative stress	6
	1.1.4.2.5.1.		6
	1.1.4.2.5.2.	ž ,	7
	1.1.4.2.5.3.	2 2	9
	1.1.4.2.5.4.	Lipid peroxidation as a major consequence for oxidative stress	9
	1.1.4.2.5.5.	Vascular damage due to cyclosporine-induced oxidative stress	10
	1.1.4.2.6.	Cyclosporine-induced dyslipidemia	10
	1.1.4.2.7.	Modulation of nitric oxide production by cyclosporine	11
	1.1.4.2.7.1.	Biosynthesis of nitric oxide	11
	1.1.4.2.7.2.	Physiological role of nitric oxide in the cardiovascular system	13
	1.1.4.2.7.3.	Cyclosporine-nitric oxide interaction	13
	1.1.4.2.8.	Modulation of carbon monoxide production by cyclosporine	14
	1.1.4.2.8.1.	•	14
	1.1.4.2.8.2.	Physiological role of carbon monoxide in the cardiovascular system	14
	1.1.4.2.8.3.	Modulation of hemeoxygenase by cyclosporine	16
	1.1.5.	Cyclosporine and Peroxisome proliferator-activated receptors gamma (PPAR-γ)	17

	1.1.5.1.	Physiological role of PPAR-γ in the cardiovascular system	17
	1.1.5.2.	Modulation of nitric oxide production by PPAR-γ	19
	1.1.5.3.	Modulation of carbon monoxide production by PPAR-γ	19
	1.1.5.4.	Interaction of cyclosporine with PPAR-γ	20
1.2.	Aim of the	work	21
2. N	IATERIALS	S & METHODS	22
2.1.	Materials		22
	2.1.1.	Animals	22
	2.1.2.	Drugs & reagents	22
	2.1.3.	Assay kits	26
	2.1.4.	Physiological solutions	27
	2.1.5.	Buffer solutions	29
2.2.	Methods		31
	2.2.1.	The isolated rat perfused kidney preparation	31
	2.2.2.	The isolated rat aortic ring preparation	31
	2.2.3.	Biochemical determinations	34
	2.2.3.1.	Serum glucose	34
	2.2.3.2.	Serum triglycerides	36
	2.2.3.3	Total serum cholesterol	37
	2.2.3.4.	Serum High density lipoprotein cholesterol (HDL-C)	39
	2.2.3.5.	Very low density lipoprotein Cholesterol (VLDL-C), low density lipoprotein Cholesterol (LDL-C) levels and the LDL-C/HDL-C ratio in serum	40
	2.2.3.6.	Total serum lipids	41
	2.2.3.7.	Aortic nitrate/nitrites	41
	2.2.3.8.	Aortic thiobarbituric acid reactive substances (TBARs)	45
	2.2.3.9.	Aortic superoxide dismutase (SOD) activity	47
	2.2.4	Aortic histopathological examination	51
2.3.	Experimen	tal protocols	52
	2.3.1.	Cyclosporine-pioglitazone renovascular interaction	52
	2.3.1.1.	Effect of pioglitazone on cyclosporine-induced attenuation of renal vasodilation	52
	2.3.1.2.	Role of nitric oxide in cyclosporine-pioglitazone renovascular interaction	53
	2.3.1.3.	Role of carbon monoxide in cyclosporine-pioglitazone renovascular interaction	54
	2.3.1.4.	Role of PPARγ in cyclosporine-pioglitazone renovascular interaction	55
	2.3.2.	Vascular cyclosporine-pioglitazone interaction in rat isolated aorta	56
	2.3.2.1.	Acute effect of cyclosporine or pioglitazone on aortic vasorelaxation	56

	2.3.2.2.	Subacute cyclosporine-pioglitazone interaction on aortic vasorelaxation	57
	2.3.2.3.	Roles of oxidative stress and dyslipidemia in the subacute cyclosporine-pioglitazone aortic interaction	58
2.4.	Statistical a	analysis	59
3 R	ESULTS		60
3.1.		ne-pioglitazone renovascular interaction	60
J.1.	3.1.1.	Effect of pioglitazone on cyclosporine-induced attenuation	61
	3.1.1.	of renal vasodilations	01
	3.1.2.	Role of nitric oxide in cyclosporine-pioglitazone renovascular interaction	71
	3.1.3.	Role of carbon monoxide in cyclosporine-pioglitazone renovascular interaction	84
	3.1.4.	Role of PPAR-γ in cyclosporine-pioglitazone renovascular interaction	98
3.2.		cyclosporine-pioglitazone interaction in the rat isolated	107
	aorta	A	107
	3.2.1.	Acute effect of cyclosporine or pioglitazone on aortic vasorelaxation	107
	3.2.2.	Subacute effect of cyclosporine and pioglitazone on aortic vasorelaxation	114
	3.2.3.	Roles of oxidative stress and dyslipidemia in the subacute cyclosporine-pioglitazone aortic interaction	121
	3.2.4.	Histopathological evaluation of vascular cyclosporine- pioglitazone interaction	124
4 D	ISCUSSIO	N	126
		ine-pioglitazone renovascular interaction	120
4.1.	Cyclospor	me-piogntazone renovascular interaction	14/
4.2.	Cyclospori	ne-pioglitazone aortic interaction	138
5. ST	JMMARY (& CONCLUSIONS	143
6. L	ITERATUI	RE CITED	146
7. A	RABIC SU	MMARY	

LIST OF ABBREVATIONS

AT₁ Angiotensin receptor-1

ATP Adenosine triphosphate

ATPase Adenosine triphosphatase

AUC Area under the curve

BH₄ Tetrahydrobiopterin

BK_{Ca} - **MaxiK** Large-conductance calcium activated potassium

channels

cAMP Cyclic adenosine monophosphate

CAT Catalase

cGMP Cyclic guanosine monophosphate

CO Carbon monoxide

CORM Carbon monoxide releasing molecule

CSA Cyclosporine-A

Cu/Zn-SOD Cupper zinc-containing superoxide dismutase

DAG Diacylglycerol

DMSO Dimethylsulphoxide

DNA Desoxyribonucleic acid

DPTA Diethylenetriamine pentacetic acid

EC₅₀ Half maximal effective concentration

EDRF Endotheilium derived relaxing factor

Emax Maximal response

eNOS Endothelial nitric oxide synthease

ET Endothelin

FFA Free fatty acids

GC Guanylate cyclase

GLUT Glucose transporter

GPx Glutathione peroxidase

GR Glutathione reductase

GS Thiyl radical

GSH Reduced glutathione

GSSG Oxidized glutathione

GTP Guanosine triphosphate

GW9662 Chloro-5-nitro-N-phenylbenzamide

H&E Hematoxylin and Eosin stain

H₂O₂ Hydrogen peroxide

HbO Oxidized haemoglobin

HDL-C High density lipoprotein-Cholesterol

HMG-CoA Hydroxymethyl-glutaryl-coenzyme A

HO Heme oxygenase

ICAM Intracellular adhesion molecule

IL Interleukin

iNOS Inducible nitric oxide synthease

IP3 Inositol triphosphate

LDL-C Low density lipoprotein-Cholesterol

MDA Malondialdehyde

MHC Major histocompatibility complex

MMP Metalloproteinase

mRNA Messenger ribonucleic acid

 N_2O_4 Dinitrogen tetraoxide

NADP Nicotinamide adenine dinucleotide phosphate

L-NAME N_{ω} -Nitro-L-arginine methyl ester hydrochloride

NED N-1-naphthylethylene diamine dihydrochloride

NFAT Nuclear factor activated T-Cell

NF-KB Nuclear factor kappa B

nNOS Neuronal nitric oxide synthease

NO Nitric oxide

NOx NO metabolites (nitrite/nitrate)

 O_2^- Superoxide anion

OH Hydroxyl radical

ONOO Peroxynitrite

Ox-LDL Oxidized-Low density lipoprotein

PDE Phosphodiesterase

PE Phenylephrine

PGI₂ Prostacyclin

15d-PGJ(2) 15-deoxy-Δ12,14-prostaglandin J2

PI3 Phosphoinositide 3-kinases

PIO Pioglitazone

PIPE piperazine-N,N'-bis(2-ethanesulfonic acid)

PKA Protein kinase A

PPAR Peroxisome proliferator activated receptors

PUFA Polyunsaturated fatty acids

RO[.] Alkoxyl radical

ROO Peroxyl radical

ROS Reactive oxygen species

RPP Renal perfusion pressure

S.E.M Standard error of mean

Ser Serine

-SH Thiol

SNP Sodium nitroprusside

SOD Superoxide dismutase

TBA Thiobarbituric acid

TBARs Thiobarbituric acid reactive substances

TC Total cholesterol

TCA Trichloroacteic acid

TG Triglycerides

T_H Helper T-Cell

TMP 1,1,3,3-Tetramethoxypropane

TNF-α Tumor necrosis factor alpha

TZD Thiozolidinedione

VCAM Vascular cell adhesion molecule

VEGF Vascular endothelium growth factor

ZnPPIX Zinc protoprophyrin IX

LIST OF TABLES

Table		Page
1.	Time course effects of the infusion of vehicle, CSA, pioglitazone or CSA+pioglitazone on renal vasodilation induced by a single bolus injection of carbachol in phenylephrine-preconstricted isolated perfused rat kidneys.	63
2.	Time course effects of the infusion of vehicle, CSA, pioglitazone or CSA+pioglitazone on renal vasodilation induced by a single bolus injection of isoprenaline in phenylephrine-preconstricted isolated perfused rat kidneys.	65
3.	Time course effects of the infusion of vehicle, CSA, pioglitazone or CSA+pioglitazone on renal vasodilation induced by a single bolus injection of papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	67
4.	Time course effects of L-NAME on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	73
5.	Time course effects of CSA, pioglitazone or their combination on renal vasodilation evoked by a single bolus injection of carbachol in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with L-NAME.	75
6.	Time course effects of CSA, pioglitazone or their combination on renal vasodilation evoked by a single bolus injection of isoprenaline in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with L-NAME.	77
7.	Time course effects of CSA, pioglitazone or their combination on renal vasodilation evoked by a single bolus injection of papaverine in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with L-NAME.	79
8.	Time course effects of L-arginine on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	81
9.	Time course effects of infusion of CSA on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with L-arginine.	83

10.	Time course effects of ZnPPIX on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	86
11.	Time course effects of CSA or CSA+pioglitazone on renal vasodilation evoked by a single bolus injection of carbachol in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with ZnPPIX.	88
12.	Time course effects of CSA or CSA+pioglitazone on renal vasodilation evoked by a single bolus injection of isoprenaline in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with ZnPPIX.	90
13.	Time course effects of CSA or CSA+pioglitazone on renal vasodilations evoked by a single bolus injection of papaverine in phenylephrine-preconstricted isolated perfused rat kidneys pretreated ZnPPIX .	92
14.	Time course effects of pretreatment with hemin on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	95
15.	Time course effects of CSA on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with hemin.	97
16.	Time course effects of GW9662 on renal vasodilations induced by bolus injections of carbachol, isoprenaline or papaverine in phenylephrine-preconstricted isolated perfused rat kidneys.	100
17.	Time course effects of CSA or CSA+ pioglitazone on renal vasodilation evoked by a single bolus injection of carbachol in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with GW9662.	102
18.	Time course effects of CSA or CSA+ pioglitazone on renal vasodilation evoked by a single bolus injection of isoprenaline in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with GW9662.	104
19.	Time course effects of CSA or CSA+pioglitazone on renal vasodilation evoked by a single bolus injection of papaverine in phenylephrine-preconstricted isolated perfused rat kidneys pretreated with GW9662.	106
20.	Acute effect of CSA or pioglitazone on the vasorelaxant responses of cumulative additions of carbachol in phenylephrine-precontarcted rat aortic rings.	109

21. Acute effect of CSA or pioglitazone on the vasorelaxant responses of cumulative additions of sodium nitroprusside in phenylephrine-precontracted rat aortic rings.
22. Effect of subacute administration of CSA, pioglitazone or their combination on the vasorelaxant responses of carbachol in phenylephrine-precontarcted rat aortic rings.
23. Effect of subacute administration of CSA, pioglitazone or their combination on the vasorelaxant responses of sodium nitroprusside in phenylephrine-precontarcted rat aortic rings.