Utilization of Pulsed Laser Deposition (PLD) in Quantum Dot Optical Detectors

A PhD thesis submitted to

Laser Science and Interactions (LSI) Department at
National Institute of Laser Enhanced Science (NILES)

Cairo University

Egypt

By

Ayman Mahmoud Ahmed Abou El Magd

Utilization of Pulsed Laser Deposition (PLD) in Quantum Dot Optical Detectors

Thesis submitted for the PhD of Sciences Degree
In
Laser Science

Name of the candidate

Ayman Mahmoud Ahmed Abou El Magd

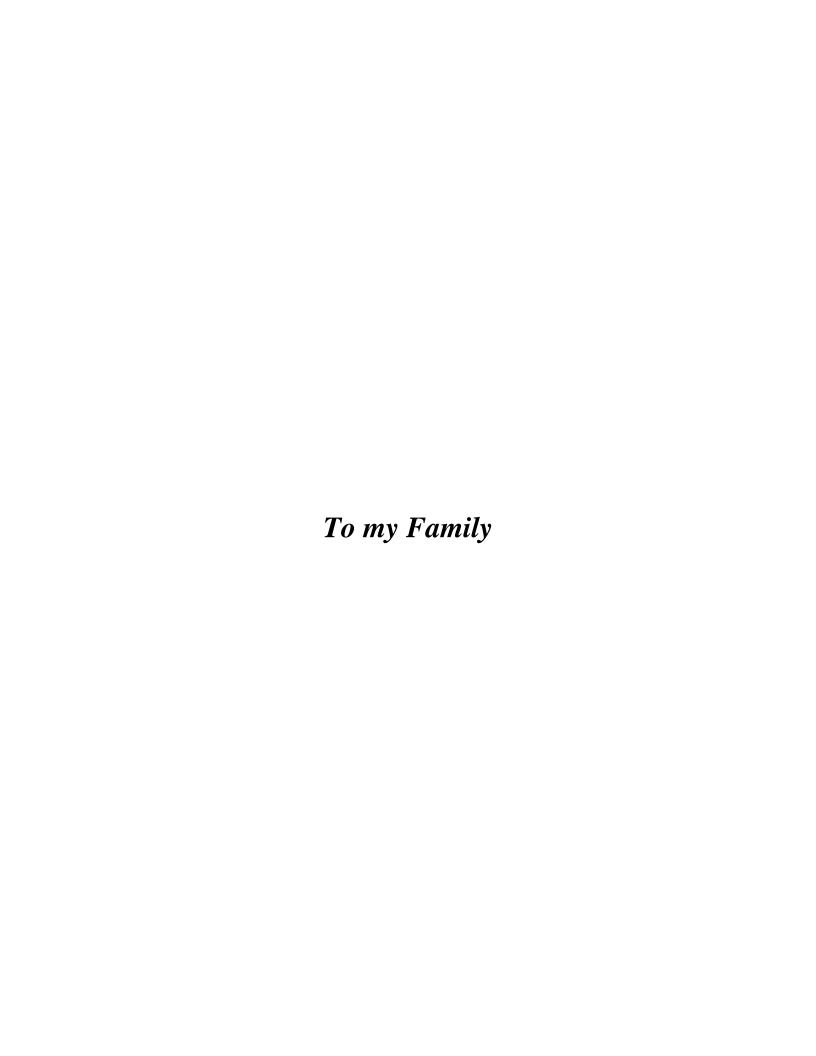
SUBMITTED TO

NATIONAL INSTITUTE OF LASER ENHANCED SCIENCE
(NILES) - LASER SCIENCE AND INTERACTIONS (LSI)

DEPARTMENT

CAIRO UNIVERSITY

Supervision committee


Prof. Dr. Y. Badr

Professor of Laser physics, National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt.

Prof.Dr.Hani Elsayed -Ali

Faculty of Electrical Engineering, Old Dominion University, Norfolk, Vergenya. USA Assist.Prof. M. Atta

Assit. Professor of Laser physics, Laser systems Department Enhanced Science, Cairo University, Giza, Egypt

ACKNWOLEDGEMENTS

It gives me great pleasure to express my deep thanks and gratitude to *prof. Dr. Y.badr*, Professor of Laser Physics in the Laser Science and Interactions department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt, not only for suggesting the subject of research, but also for his continuous help, supervision, guidance, criticism, valuable discussion and reading through out the thesis.

Also I would like to thank prof. *Prof.Dr.Hani Elsayed –Alim* Faculty of Electrical Engineering, Old Dominion University, Norfolk, Vergenya. US, for suggesting the subject of research.

I would like to take this opportunity to express my sincere thanks, deep gratitude and appreciation to *Assist. prof. Dr. Mohamed Atta*, Assistant Professor of Laser Science and Interactions department, National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt, for his kind help, supervision and continues support through all the work of this thesis.

Finally, I would like to thank my colleagues in National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt.

Ayman

CONTENTS

	Page
Aim of the work	i
Abstract	ii
List of figures	iv
Chapter 1: introduction	
1.1 Introduction	1
1.2. Fundamentals of Nanostructured Semiconductors	3
1.2.1 Energy states of carriers in free space of different dimen	sionality4
1.2.2 Effects of confinement on energy states	7
1.2.3 Density of states	12
1.2.3.1 Density of states for bulk materials	12
1.2.3.2 Density of states for two dimensional materials	16
1.2.3.3 Density of states for one dimensional materials	21
1.2.3.4 Density of states for zero dimensional materials	24
1.2.4 Applications of Nanostructured Semiconductors	25
Chapter 2: Interaction of Laser Radiation with matter	
2.1 Interaction of Laser radiation with matter	30
2.2 Absorption of Radiation	36
2.2.1 Metals	36
2.2.2 Insulators and semiconductors	39
2.3 Mechanisms of laser ablation	41
2.3.1 Thermal ablation.	44
2.3.2 Electronic ablation	49
2.3.3 Exfoliational ablation	53

2.3.4 Hydrodynamic ablation	
Chapter 3: Pulsed Laser Deposition	
3. Fundamentals of Pulsed Laser Deposition	1
3.1 Film Growth via Pulsed Laser Deposition	
3.2 Historical background and Evolution60)
3.3 PLD set-up and methodology63	3
3.4 Lasers for PLD66	5
3.4.1 Excimer Lasers 68	,
3.4.2 Excimer Laser Transition and Pump Scheme69)
3.4.3 Pulse Forming Network71	Ĺ
3.4.5 Gas Discharge71	L
3.4.6 Major Components of an Excimer Laser74	1
4. Laser Safety	,
4.1 Laser safety standards	
4.2 Classification of Laser	
Chapter 4: Thin Film Characterization Techniques	
4.1 Thin Film Characterization Techniques	9
4.2 X-ray Diffraction 79	9
4.3 Scanning Electron Microscopy8	0
4.4 Energy-dispersive X-ray Spectroscopy80	\mathcal{O}
4.5 Atomic Force Microscopy80	0
4.5.1 Atomic Force Microscope	1
4.6 Measurement of the thickness	3
4.6.1The Ellipsometer 83	3
4.6.1.1 Principle of operation83	3
4.6.2 Michelson Interferometer 84	4
4.6.2.1 BASIC PRINCIPLES 85	5
4.6.2.2 Measurement of the thickness of thin film of less than $\lambda/2$ 8	6

Chapter 5: Experimental results and Discussion

Part I: Design of PLD System	and Experimental Setup
------------------------------	------------------------

5.1. Experimental set up and the thin films characterization set up	88
5.1.1. Main component of deposition system	88
5.1.1.1 Vacuum chamber	88
5.1.2 The Laser source.	89
5.1.3 Mechanical supports of the setup	92
5.1.4 Vacuum system.	94
5.1.5 Substrate holder Temprture Control system	99
5.1.6 Preparation of the substrates	104
5.1.7 Target Holder	104
5.1.8 The Target	104
5.1.9 The characterization setup of the plasma plume	105
5.1.10 Morphological and structural Characterization	107
5.1.10.1 X-Ray Diffraction	107
5.1.10.2 Scanning electron Microscope	108
5.1.10.3 Optical Microscope	108
5.1.10.4 Energy Dispersive X-Ray Spectrometry (EDX)	108
5.1.10.5 Atomic Force Microscope	109
5.1.11 Electrods Fabrication	110
5.1.12 Electro Optic measurements	111
5.1.12.1 The laser source	113
5.1.12.2 Delivery system	116
5.1.13 I-V characteristics	116
5.1.14 THICKNESS DISTRIBUTION	118
5.1.14.1 Thickness Distribution Measurements	118
5.1.15 Thin film thickness measurements	120
5.1.15.1 Elepsometry	120

5.1.15.2 Michelson interferometer
5.1.15.3 Measurement of the thickness of thin film of less than $\lambda/2122$
Part II: Results and discussion
5.2.1 Results and discussion
5.2.2 Target material
5.2.3 Substrate material
5.2.3.1 Amorphous
5.2.3.2 Crystaline
5.2.4 Characterization of Laser Produced Plasma
5.2.5 Thin Film Homogeneity
5.2.6 Thickness Distribution
5.2.7 Thin film Absorbance measurements
5.2.8 Morphology and Microstructure
5.2.8.1 Scanning Electron Microscope
5.2.8.2 X-Ray Diffraction (XRD)
5.2.8.3 Atomic Force Microscope (AFM)
5.2.9 Film Composition
5.2.10 Electrical I-V characteristics
5.2.11 photoconduction
Conclusion
References. 154
Arabic summary

Aim of the work

- Design and performance of a Pulsed Laser Deposition System including;

The PLD chamber

- -the vacuum system
- Mechanical feed through
- -electrical feed through
- -motor for rotation of the target and its driver
- Temperature control system for the substrate holder heater
- thin film production using this PLD
- Single Quantum dots lyre
- Multi quantum dots lyre
- Thin film thickness measurements
- Thin film diagnostics;
 - Optical microscope
 - Electron microscope
 - XRD
 - EDX
 - AFM
 - I-V Characteristics
 - Optical detector measurements

Abstract

Now a day, it is well known that the material characteristics could be changed by changing the size keeping the chemical compositions intend. Thus, the possibility to tailor the material properties by varying the size alone provided the mankind a revolutionary wisdom of materials science, which enabled the emergence of a new branch of technology called Nanotechnology.

On the other hand, Pulsed Laser Deposition (PLD) has been used for epitaxial growth of thin films and multilayer/super lattice of complex materials.

Its aimed in the present work to design a homemade system for PLD based on XeCl Eximer Laser 308 nm, energy per pulse 0-13 mJ, pulse duration 6 ns and reputation rate 0-200 Hz.

PLD Vacuum chamber, vacuum system, mechanical feed through and electrical feed through including rotation of the target, substrate and heating the substrate. The deposition parameter were optimized for the given material including energy per pulse, distance between target and substrate, type of the substrate, in addition temperature to get crystalline or amorphous layers, number of Laser pulses, ambient gas and pressure.

As well as the orientation of the sample-substrate and the Laser beam.

According to the optimization the parameters, we obtained reliable system in which that we obtained exactly the same layers when we used the number of pulses and the same deposition parameter which indicates the reproducibility of the here system. More over we obtained same layer of GeS, ZnS, PbSnSe, PbS and Al₂O₃, the last material was used as capping layer in order to obtain clear quantum dot layer of GeS. Moreover, we designed and performing the following diagnostic techniques,

- -Michelson interferometer for film thickness measurements.
- -System for I-V measurements under fixed temperature using a temperature control system..
- -Laser Induced Breakdown Spectroscopy (LIBS) setup for plasma emission spectroscopy, to record a life spectrum during the laser deposition.
- -System to test the thin film as optical detector using a diode laser system with fiber beam delivery system.
- -System for measuring the resulting thin film distribution on the substrate.

the fabricated GeS layer was examined by atomic force microscope indicates the quantum dots structure of the layer with the domain of 6-8 nm height and less than 100 nm width.

Finally, the introduced here PLD homemade system approved to be a repayable one given reproducible result of the semiconductor layer which produced to be a good candidates for laser detector in different region of the spectrum specially in the IR region.

List of Figures

Figure (1-1): One dimensional infinite square potential well
Figure (1-2): Quantized energy levels for $nz = 1$ and $nz = 2$ and the
corresponding wave functions for infinite square potential well10
Figure(1-3): Bulk material showing extension along all the three
dimensions
Figure (1-4): Variation of density of states with energy for bulk material
i.e. a three dimensional semiconductor
Figure (1-5): Variation of density of states with energy for quantum wells
i.e. a two dimensional semiconductor
Figure (1-6): Variation of density of states with energy for quantum wire
i.e. a one dimensional semiconductor23
Figure (1-7): Variation of density of states with energy for quantum dot
i.e. a zero dimensional semiconductor25
Figure (2.1): Schematic of different types of electronic excitations in a
solid. Straight lines indicate absorption or emission of photons with
different energies, hv. Oscitlating lines indicate non-radiative
processes
Figure (2.2): Generic dielectric function for a nonmetallic solid40
Figure (2.3) Scheme of relevant processes during short pulse laser
ablation, namely laser-induced vaporization, surface melting and shock
wave formation
Figure (2.4): p-T diagram
Figure (2.5): Hypothetical steps in the interaction of a W-laser pulse with
a polymer51
Figure (2.6): Snapshots of the plume
Figure (2.7): Scheme of irradiation of a shallow cavity55

Figure (3.1): Schematic of Pulsed Laser Deposition setup64
Figure (3-2): Energy diagram and pump schematic for excimer laser70
Figure (3-3): Basic components of the excimer laser70
Figure (3-4): Preionization.
Figure (3-5): Gas discharge
Figure (3-6): Formation of excimer molecules
Figure (3-7): Laser transition
Figure (3-8): Cross-sectional view of an excimer laser head
Figure (3-9): Block diagram of a typical excimer laser
Figure (3-10): Typical example of excimer laser control
Figure (4-1): X-ray geometry used for the structural characterization of
the films
Figure (4-2): Principle of AFM82
Figure (4-2): Principle of AFM83
Fig.(4-4): Optical paths in a Michelson interferometer85
Figure (4-5): The conceptual arrangement of the Michelson nterferometer
for thin film thickness measurement87
Figure (5-1) Photos of the home-made Chamber
Figure (5-2) The OPTex Excimer Laser from Lambda Physics90
Figure (5-3) excimer laser Control program
Figure (5-4) Schematic diagram of the PLD Chamber design93
Figure (5-5) PLD Camber from outside
Figure (5-6) Photo of the typical used pumps in our set up96
Figure (5-7) The schematic diagram of the vacuum system97
Figure (5-8) The gauge meter
Figure (5-9) Photos of the module with details of power delivery100
Figure (5-10) Photo for the Variac transformer used to change the heater
supply voltage value from 0 220 V AC

Figure (5-11) Digital temperature control unit used to control the
substrate temperature
Figure (5-12) Photo for The mechanical feedthrough used as heater
holder
Figure (5-13) Schematic of the mechanical feedthrough
Figure (5-14) The electrical feed through
Figure (5-15) two target material fixed on the target holder105
Figure (5-16) The characterization setup of the plasma plume106
Figure (5-16a) The characterization setup of the plasma plume107
Figure (5-17) Atomic Force Microscope
Figure (5-18) Photo for the printed circuit board used to fix the ample.111
Figure (5-19) Electro optic absorption experiment
Figure (5-20) the diode laser
Figure (5-21) Diode laser characteristics
Figure (5-22) the band width of the diode laser
Figure (5-23) Setup for the thin film I-V Characteristics
Figure (5-24)Thin Film thickness distribution Setup
Figure (5-25) Photo of the thickness distribution setup120
Figure (5-26) Schematic of the elepsometr
Figure (5-27) The Rudolph AutoEL II ellipsometer
Figure (5-28) The Rudolph AutoEL II ellips software
Figure (5-29) Michelson Interferometer
Figure (5 - 30) Photo of the plasma plume126
Figure (5 - 31) Emistion Spectra of the GeS
Figure (5 - 32) (a) ZnS film at room temprture, (b) ZnS film at 300 oC
(c) GeS film at 300 oC
Figure (5 - 33) PbSnSe on ZnS substrate Thin film thickness distribution
maggiraments 130

Figure (5 - 34) GaAs on Glass Substrate Thin film thickness distribution
measurements
Figure (5 - 35) Germanium Sulfide on glass substrate Thin film thickness
distribution measurements
Figure (5 - 36) absorption of GeS on Glass substrate
Figure (5 - 37) Scanning electron microscope images of GeS Bulk
material
Figure (5 -38) Scanning electron microscope images of GeS on quartz
substrate
Figure (5 - 39) XRD measurements for GeS on glass substrate138
Figure (5 - 40) XRD measurements for GeS on Quartz substrate140
Figure (5 - 41) XRD for the Quartz substrate141
Figure (5 - 42) Two dimension AFM image for GeS quantum dots143
Figure (5 - 43) Three dimension AFM image for GeS quantum dots143
figure (5 - 44) Two dimension AFM image for GeS single quantum
dot
Figure (5 - 45) Three dimension AFM image for GeS single quantum
dot
Figure(5 - 46) EDX measurements of GeS ratio in GeS films deposited on
glass substrates
Figure (5 - 47) EDX measurements of ZnS ratio in ZnS films deposited
on glass substrates
Figure (5 - 48) EDX Measurements of the Glass substrate148
Figure (5 - 49)The relation between the current and the applied voltage
for the GeS quantum dots film on quartz substrate150
Figure (5 - 50) Photoconduction results of GeS quantum dots film152