#### ڗڔڮڗؖ؉؉؊ڹڮڗ؆؇ڮڛ؇ڎؿ ڮڵڿ؊ڮڗڰڋڮٳڮڿڮڮ ڮڵڿڂڮڰڰۻڮڰڮڰۼڰڰ

# ڗٛٳڒڿؙڰ ڒٛؠٳڹۅؗڰ ۯڂ؆ڹؗڴ ڿڹؖڔؖٛڰ ڒڹٛڷڷ۫ۼ ڒڹٙ۩ڰ ڵڷ**ڗؙڮ**۩ ڿڹڒڿؙڒؙڰ؆ڰؙڒۊ ڝؙڎٳ؞ڝؙڿٳ؞ڿ؊ۺ؊ٷٳڹڎۼٷٵڰٷٷٳڰڛڰۺڟڮڰ؊ٷٳٷ؞

المنازة والبقراة : ٢٠٠٠

# MITOCHONDRIAL DNA MUTATIONS AS A GENETIC MARKER FOR COLORECTAL CANCER

#### Presented by

# Hala Ahmed Mohamed Abd EL-Hady B.SC., Zoology

#### A thesis submitted

To

Faculty of Science - Cairo University
in partial fulfillment of the requirements for
the Degree of
M.SC. of Science
(Cytology, Histology & Genetics)

Zoology Department
Faculty of Science
Cairo University

(2010)

### APPROVAL SHEET FOR SUMISSION

**Thesis Title:** 

# "Mitochondrial DNA mutations as a genetic marker for colorectal cancer"

Name of candidate:

## Hala Ahmed Mohamed Abd EL-Hady

This thesis has been approved for submission by the Supervisors:

1- Prof. Dr. M. Akmal Abd El-Rahim Elghor
Professor of Genetics, Zoology Department,
Faculty of Science, Cairo University

2- Prof. Dr. Abd El-Hady Ali Abd El-Wahab
Professor of Biochemistry & Molecular Biology
Cancer Biology Department,
National Cancer Institute, Cairo University

3- Dr. Ibrahim Abd El-Bar Seif Eldein
Consultant of Surgical Oncology,
Tanta Cancer Center

Prof. Dr. Kawther S. Abou El Ala

**Chairman of Zoology Department Faculty of Science- Cairo University** 

# الطفرات في الدنا الميتوكونديري كدلالة وراثية لسرطان القولون والمستقيم

إعداد

# هالة أحمد محمد عبد الهادى بكالوريوس علوم

رسالة مقدمة

إلي **كلية العلوم جامعة القاهرة**كجزء من متطلبات الحصول على درجة

الماجستير

(علم الخلية والانسجة والوراثة)

قسم علم الحيوان كلية العلوم جامعة القاهرة (۲۰۱۰) This thesis is dedicated to my parents, who taught me the value of education. I am deeply indebted to them for their continued support and unwavering faith in me.

#### Acknowledgements

My eternal gratitude to God almighty for granting me the precious helps to accomplish this work. Wishing that God may accept it as an ongoing charity.

My deep appreciation to Prof. Dr. M. Akmal Abd El-Rahim Elghor, professor of Genetics, Zoology Department, Faculty of Science Cairo University, for supervising this work and for his unrivalled knowledge, effort and patience.

A very special dedication to Prof. Dr. Abd El-Hady Ali Abd El-Wahab, Professor of Biochemistry L. Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, for supervising and planning this work and for the great support and suggesting which contributed to the accomplishment of this Thesis.

Thanks to Dr. Ibrahim Abd El-Bar, Consultant of Surgical Oncology, Tanta Cancer Center.

My great thanks and respect to Assistant Prof. Dr. Nadia El gundy, Assistant Professor of Biochemistry L. Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, for her encouragement and for review manuscript.

Eternally grateful for my professors; Prof. Dr. Fouad Saleh, the previous Chairman of Zoology Department, Faculty of Science, Cairo University; Prof Dr. Rashika El Ridi Professor of Immunology Faculty of Science, Cairo University, Dr. Medhat El-Halawany, lecturer of Molecular Biology, Faculty of Science, Cairo University, Prof. Dr El Said Salem Faculty of Science, Zoology Department, Tanta University; Prof. Dr Abdel Rahman Zakri, Cancer Biology Department, National Cancer Institute, Cairo University and prof. Dr Mahmoud El-Rouby, Cancer Biology Department, National Cancer Institute, Cairo University, for their kindly, unrivalled knowledge, guidnace, assistance, encouragement and support.

I wish to express my love and eternal gratitude to my parents for their understanding, endless love and for all things.

Eternally grateful also for, my brothers Mohamed Abd El-Hady and Mahmoud Abd El-Hady and also my sisters Safaa Abd El-Hady and Howida Abdelhady, for thier assistance and support, and understanding, without them, I could not have completed this work.

Express my gratitude to all my friends especially, Hanan Kiwan, Noha Ramadan, Ebtsam for their extended support and their helped to me.

I would also like to convey my thanks to the Cairo University for providing the financial means, academic and laboratory facilities. All thanks and appreciation to the National Cancer Institute, Cairo University; Faculty of Science, Cairo University and also Kasr Al Eini Endoscopic Unit, Tropical Medicine Department, Faculty of Medicine.

# **Table of Contents**

|                                                            | Page |
|------------------------------------------------------------|------|
| Acknowledgments                                            |      |
| List of Figures.                                           | vi   |
| List of Tables.                                            | viii |
| Abbreviation                                               | ix   |
| Abstract                                                   | xi   |
| 1. Introduction and Aim of the work                        | 2    |
| 2. Review of the Literature                                | 6    |
| 2.1. Colorectal cancer                                     | 6    |
| 2.1.1. Anatomy of colon                                    | 6    |
| 2.1.2. Anatomy of rectum                                   | 7    |
| 2.1.3. Epidemiology                                        | 8    |
| 2.1.4. Staging of CRC                                      | 8    |
| 2.1.5. Types of colorectal cancer                          | 9    |
| 2.1.6. Risk factors                                        | 11   |
| 2.1.7. Idiopathic inflammatory bowel disease               | 12   |
| 2.1.8 Colorectal polyps                                    | 14   |
| 2.1.9. Prevention and early detection                      | 15   |
| 2.1.10. Screening methods                                  | 15   |
| 2.2. General aspects of mitochondrial biology and genetics | 18   |
| 2.2.1. Mitochondrial DNA (mtDNA)                           | 19   |
| 2.2.2. Mitochondrial DNA (mtDNA) mutations and cancer      | 22   |
| 2.2.3. Colorectal Cancer and mtDND mutations               | 23   |
| 3. Subjects and Methods                                    | 27   |
| 3.1. Samples collection                                    | 27   |
| 3.2. Genomic DNA extraction from tissue samples            | 31   |
| 3.3. Electrophoresis of extracted DNA.                     | 32   |
| 3.4. Concentration of DNA                                  | 33   |
| 3.5. Mutation Detection of mtDNA genes                     | 33   |
| 3.6. Sequencing analysis                                   | 39   |
| 3.7. Statistical Analysis                                  | 42   |
| 4. Results                                                 | 44   |

| 5. Discussion   | 64 |
|-----------------|----|
| 6. Summary      | 69 |
| 7. References   | 73 |
| Arabic summary  |    |
| Arabic abstract |    |

# **List of Figures**

| Figure No.           |                                                                  | Page |
|----------------------|------------------------------------------------------------------|------|
| Figure (1):          | Anatomy of Colon and Rectum                                      | 7    |
| Figure (2):          | Structure of mitochondrial DNA.                                  | 21   |
| Figure (3):          | Shows example of the separation of genomic DNA                   | 45   |
|                      | isolated from different samples collected.                       |      |
| Figure (4):          | PCR products for gene (ND1) in UC patients electrophoresed       | 46   |
|                      | on 2% agarose.                                                   |      |
| Figure (5):          | PCR products for gene (ND5) in CRC patients electrophoresed      | 46   |
|                      | on 2% agarose.                                                   |      |
| Figure (6):          | PCR products for (Dloop2) region in AP patients electrophoresed  | 47   |
|                      | on 2% agarose.                                                   |      |
| <b>Figure (7):</b>   | PCR products for (Dloop1) region in AP patients electrophoresed  | 47   |
|                      | on 2% agarose.                                                   |      |
| Figure (8):          | PCR products for gene (CO1) in CRC patients electrophoresed      | 48   |
|                      | on 2% agarose.                                                   |      |
| Figure (9):          | PCR products for gene (tRNAser) in UC patients electrophoresed   | 48   |
|                      | on 2% agarose.                                                   |      |
| <b>Figure (10)</b> : | Shows 3 examples of PCR products of mtDNA, (A, B, C) from the    | e 49 |
|                      | lesion tissues and blood normal control, for 3 different markers |      |
|                      | were analyzed by PCR- SSCP silver staining technique for detect  | ion  |
|                      | of mutations.                                                    |      |
| <b>Figure (11):</b>  | Shows distribution of mtDNA mutations for different genes in 3   | 50   |
|                      | the different groups examined using PCR-SSCP analysis.           |      |
| <b>Figure (12):</b>  | The percentage of distribution for mutation at mtDNA in          | 52   |
|                      | different markers examined for CRC patients using PCR SSCP       | •    |
|                      | silver staning technique.                                        |      |
| <b>Figure (13):</b>  | SSCP silver staining technique for detection of mutations in     | 53   |
|                      | ND1 gene of mtDNA genome in colorectal cancer samples.           |      |
| <b>Figure (14):</b>  | SSCP silver staining technique for detection of mutations in 62  | 53   |
|                      | DLoop1 gene of mtDNA genome in colorectal cancer sample1.        |      |

| Figure (15): The percentage of distribution for mutation at mtDNA |                                                                                   | 56 |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|----|
|                                                                   | in different markers examined for Adenomatous Polyps                              |    |
|                                                                   | patients using PCR SSCP silver staning technique.                                 |    |
| <b>Figure (16):</b>                                               | SSCP silver staining technique for detection of                                   | 57 |
|                                                                   | mutations in tRNAser of mtDNA genome                                              |    |
|                                                                   | in Adenomatous Polyps.                                                            |    |
| Figure (17): (                                                    | <b>A</b> , <b>B</b> ) SSCP silver staining technique for detection of mutation in | 57 |
|                                                                   | ND1 of mtDNA genome in Adenomatous Polyps sample.                                 |    |
| <b>Figure (18):</b>                                               | The percentage of distribution for mutation at mtDNA                              | 60 |
| i                                                                 | n different markers examined for ulcerative colitis patients                      |    |
| u                                                                 | sing PCR SSCP silver staning technique.                                           |    |
| Figure (19): (                                                    | <b>A,B</b> ) SSCP silver staining technique for detection of mutations in         | 61 |
| I                                                                 | D-Loop1 region of mtDNA genome in ulcerative colitis samples.                     |    |
| Figure (20): 3                                                    | SSCP silver staining technique for detection of mutations in                      | 61 |
|                                                                   | D-Loop2 region of mtDNA genome in ulcerative colitis samples.                     |    |

# **List of Tables**

| Table No.          |                                                              | Page |
|--------------------|--------------------------------------------------------------|------|
| <b>Table</b> (1):  | TNM Classification of Carcinoma of the Colon and Rectum.     | 9    |
| <b>Table (2):</b>  | The clinical data for the patients of adenocarcinoma groups. | 28   |
| <b>Table (3):</b>  | The clinical data for the patients of polyps group (II).     | 29   |
| <b>Table (4):</b>  | The clinical data for the patients of IBD group (III).       | 30   |
| <b>Table (5):</b>  | The primer sequence of mtDNA genes used and                  | 34   |
|                    | their fragment sizes.                                        |      |
| <b>Table (6):</b>  | PCR condition of amplification for each mtDNA markers.       | 35   |
| <b>Table (7):</b>  | Summary of mitochondrial DNA mutations in colorectal         | 54   |
|                    | cancer samples                                               |      |
| <b>Table (8):</b>  | The correlation between mtDNA mutations and clinical         | 55   |
|                    | factors of CRC patients.                                     |      |
| <b>Table (9):</b>  | Summary of mitochondrial DNA mutations in adenomatous        | 58   |
|                    | polyps samples.                                              |      |
| <b>Table (10):</b> | Summary of mitochondrial DNA mutations in ulcerative         | 62   |
|                    | colitis samples.                                             |      |

#### **Abbreviations**

**APC:** Adenomatous Polyposis Coli

**APS:** Amonium persulfate.

**ASTR:** Egyptian Academy of Science and Technology Research

**bis:** N,N'-methylenebisacrylamide.

**bp:** base pair.

CT: Computed Tomography CRC: Colorectal cancer

**CTC:** Computed Tomography Colonography.

DCC: Deleted in Colorectal Cancer.DCBE Double-Contrast Barium Enema.dGTP: 2'-deoxyguanosine 5'- triphosphate.

**D-loop:** displacement loop. **DNA:** Deoxyriboneucleic acid

**dNTP:** 2'-deoxynucleoside 5'- triphosphate.

E&H: Eosin & hematoxylin stained
EDTA: Ethylenediaminetetra-acetic acid
FAP: Familial Adenomatous Polyposis.
FIT: Fecal Immunochemical Test
FOBT: Fecal Occult Blood Test.

g: gram.

**GTP:** Guanosine diphosphate.

**HNPCC:** Hereditary Nonpolyposis Colorectal Cancer.

**HPR:** homopolymer region.

**HPLC:** High performance liquid chromatography.

**IBD:** Inflammatory Bowel Diseases. **IRB:** institutional review board

**KD:** Kilo Dalton.

**LOH:** Loos of Heterozygosity.

M: Mollar.mg: Milligram.μg: Microgram.μl: Microliter.mMin: Minute.

mtDNA: mitochondrial DNA.

ml: Milliliter.mM: Millimolar

**MMR:** Mismatch repair.

**MSI:** Microsatellite Instability.

**MSNT:** matched surrounding normal tissues.

nDNA: nuclear DNA.C: Grade Celsius.OD: Optical Density.

OMM: Outer Mitochondrial membrane. OXPHOS: oxidative phosphorylation system.

**PCR:** Polymerase chain reaction.

**pH:** The hydrogen ion concentration.

**ROS:** Reactive Oxygen Species.

**rpm:** Round per minute. **rRNA:** ribosomal RNA.

**sDNA:** stool DNA test.

**SSCP:** Single Strand Conformation Polymorphism

TAE: Tris acetate EDTA
Taq: Thermus aquaticus
TBE: Tris borate EDTA.

**TBp:** TATA Box Binding Protein.

TCF: T-Cell- Factor. TE: Tris EDTA.

**TEMED:** N,N, N', N'-tetramethylethylenediamine.

**tRNAs:** transfer RNAs.

U: Unit(s).

**UC:** Ulcerative Colitis.

**UV:** Ultraviolet.

**W:** Watt.

WHO: World Health Organization.WRCF: World Cancer Research Fund.

#### **ABSTRACT**

**Student Name:** Hala Ahmed Mohamed Abd El-Hady

Title of the thesis: "Mitochondrial DNA Mutations As A Genetic Marker for

Colorectal Cancer"

**Degree:** M.SC. (Cytology, Histology & Genetics)

In this study we aim to evaluate the mitochondrial DNA (mtDNA) mutations as a genetic marker for early detection of colorectal cancer (CRC) in Egyptian patients, to reduce the incidence and mortality rate of CRC in Egypt. Six different regions of mtDNA (ND1, ND5, COI, tRNAser & 2 regions in the D-Loop) were chosen for mutation analysis using PCR-SSCP silver staining technique followed by automated sequencing. Biobsy tissue samples from 20 patients with adenomatous polyps (AP), 20 with ulcerative colitis (UC) and 40 with CRC were collected together with blood sample to be used as controls. High frequency of mutations was detected (45% in AP, 35% in UC and 35% in CRC). Our study suggests that Egyptian CRC patients have a number of mtDNA mutations that have not been previously reported and that mutations in mtDNA of precancerous lesions (AP, UC) may contribute to the transformation events leading to CRC and can be considered as a genetic marker (Biomarker) for early detection of CRC in Egypt, but we need more samples to confirm this assumption.

**Keywords:** Colorectal cancer, Mitochondrial DNA, Mutations, Biomarker, Genetic marker, Early detection.

#### **Supervisors:**

| 1- Prof. Dr. M. Akmal Abd El-Rahim Elghor | ••••  |
|-------------------------------------------|-------|
| 2- Prof. Dr. Abd El-Hady Ali Abd El-Wahab | ••••• |
| 3- Dr. Ibrahim Abd El-Bar Seif Eldein     | ••••  |

Prof. Dr. Kawther S. Abou El Ala

**Chairman of Zoology Department** 

**Faculty of Science- Cairo University** 

#### 1. Introduction

Colorectal cancer is one of the most common human malignancies, with more than 300,000 cases both in the United States and in the European Union each year where the vast majority of cases occurs over age 60 years (Lievre *et al.*, 2005; *Greenle et al.*, 2000). In contrast, this disease is uncommon in developing countries (Magrath and Litvak, 1993), including Egypt where it is only the fifth most common cause of cancer deaths (Soliman *et al.*, 1999). However, the percentage of young-onset colorectal cancer cases in Egyptian is strikingly high with more than one third of cases occurring under age of 40 years, and the age-adjusted mortality rates in young Egyptians are likewise high. In addition, rectal cancer is frequent (Soliman *et al.*, 1997; 1999).

The molecular pathology of colorectal carcinoma in Egypt differs from Western patients, and between younger and older Egyptians (Soliman *et al.*, 2001). The rectal predominance in Egyptian cases occurred in both younger and older patients and was unrelated to urban\rural residence, which associated with very different environmental exposure (Soliman *et al.*, 2001).

Westernization of Egypt is occurring as the country develops and is affecting young people first because they are likely to change lifestyle than older people. The remarkable differences in molecular pathology as compared to western patients could result from inherent differences in sensitivity and molecular responses to Western lifestyle in Egyptians (Rockhill and Giovannucci, 1999).

Early stage CRC does not usually have symptoms; therefore, screening is necessary to detect CRC in its early stages then reduce incidence and mortality can be achieved. Over the last few years, a variety of approaches have been developed to improve results of conventional cancer screening by detecting molecular markers in different populations (Rozen *et al.*, 2005).

Each human cell contains two genomes, nuclear genome (nDNA) and mitochondrial genome (mitochondrial DNA (mtDNA)) (Chatterjee *et al.*, 2006). Although much knowledge has been collected concerning alterations in cancer cell nuclear DNA (nDNA), less attention has been paid to mutations within mitochondrial DNA (mtDNA) (Lievre *et al.*, 2006). Over the last few years, a variety of approaches have been developed to improve results of conventional cancer screening by detecting molecular markers in different populations (Verma and Kumar, 2007). In the recent years, much attention has been paid to genetic changes in mitochondrial DNA (mtDNA) (Mandavilli *et al.*, 2002).