Assessment of different parameters of renal function in Egyptian patients with thalassemia major and thalassemia intermedia

Thesis submitted for partial fulfillment of Master Degree of Pediatrics

$\mathbf{B}\mathbf{y}$

Karim Mahmoud Abo El Seoud

MB., B.Ch.

Faculty of Medicine – Cairo University

Under supervision of

Prof. Dr. Amira Abd El Moneam Adly

Assistant Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Dalia Nabil Toaima

Lecturer of Pediatrics
Faculty of Medicine – Ain Sams University

Dr. Noha Refaat Mohamed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

"مُقُلُ رُبُّ زِحْنِي عِلْمًا"

سورة طه الآية (١١٤)

First of all, to **Allah** the most merciful for guiding me through and giving me the strength to complete this work the way it is.

I would like to express my deeply felt gratitude to **Prof. Dr. Amira**Abd El Moneam Adly assistant Professor of Pediatrics, faculty of

Medicine, Ain Shams University for giving me the chance of working under
her supervision. I appreciated her constant encouragement.

Great appreciation and gratitude to **Dr. Dalia Nabil toaima** lecturer of Pediatrics, faculty of Medicine, Ain Shams University for her great efforts. Valuable guidance, and great concern that really supported the work.

Many Thanks for **Dr.Noha Refaat Mohamed** lecturer of clinical and chemical pathology, faculty of Medicine, Ain Shams University, For her kind supervision, and great help throughout the practical part of this work.

Special thanks and respect to **Dr. jonair Hussein Abd El Kafy**, lecturer of pediatrics, faculty of medicine, Ain shams university, for her invaluable help and assistance in the initial steps and the protocol of this work.

Finally, I would like to convey my gratitude to my patients and their families and to every person who helped me while performing this work.

s Ja

Family for their warm affection, patience, encouragement, and for always being there when I needed them

S Ja

My wife who always support me with powerful spirit, my daughter Lara who fills my life with joy.

List of contents

List of abbreviation		I
List of figures		III
List of tables		V
Introduction & Aim of work		1
Review of literature		
	Overview on eta thalassemia	4
	Renal involvement in eta thalassemia	52
Subjects and methods		62
Results		75
Discussion		107
Summary		117
Conclusion		121
Recommendations		122
References		123

List of abbreviations

	Alpha
	Beta
	Epsilon
	Gamma
	Delta
	Zeta
AG	Arginine
AIDS	Acquired immunodeficiency syndrome
ALT	Alanine aminotransferase
CKD	Chronic kidney disease
CVS	Chorionic villus sampling
DFO	Desferrioxamine
DNA	Deoxy ribonucleic acid
ECG	Electrocardiogram
ELISA	Enzyme-linked immuno sorbent assay
FT4	Free thyroxine
GFR	Glomerular filtration rate
GT	Glutamine
$GV\!H\!D$	Graft Versus Host Disease
Hb	Hemoglobin
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigen
HSCT	Hematopoietic stem cell transplantation
HU	Hydroxyurea
IGF-1	Insulin-like growth factor 1
IGFBP-3	Insulin-like growth factor binding protein

LIC	Liver iron concentration
МСН	Mean corpuscular hemoglobin
MCV	Mean corpuscular volume
MDA	Malondialdehyde
mRNA	messanger ribonucleic acid
MRI	Magnetic resonance imaging
NESTROFT	Naked Eye Single Tube Red Cell Osmotic
	Fragility test
NTBI	Non-transferrin-bound plasma iron
OGTT	Oral glucose tolerance test
PCR	Polymerase chain reaction
RBC s	Red blood cells
rHUEPO	Recombinant human erythropiotin
SQUID	Superconducting quantum interference
	device
STFR	Serum transferrin receptors
TI	Thalassemia intermedia
TM	Thalassemia major
TRH	Thyrotropin releasing hormone
TSH	Thyroid stimulating hormone
U-NAG	Urinary N-acetyl-Beta-D-glucosaminidase

List of figures

Figure	Title	Page
(1)	The geographical distribution of the thalassemias and the more common inherited structural hemoglobin abnormalities.	5
(2)	The -globin gene cluster on the short arm of chromosome 11.	6
(3)	Structure of hemoglobin.	8
(4)	The normal structure of the -globin gene and the locations and types of mutations resulting in -thalassemia.	11
(5)	Thalassemia facies.	<i>1</i> 5
(6)	Factors contributing to hypercoagulability in thalassemia (RBCs=red blood cells)	22
(7)	Management of thalassemia and related complications.	27
(8)	Thlassemia major showing a high degree of poikilocytosis and RBCs.	30
(9)	The classic 'hair on end' appearance on plain skull radiographs of a 9-year-old girl with thalassemia intermedia showing the cranium.	36
(10)	Excessive iron in a bone marrow.	<i>37</i>
(11)	Comparison between thalassemia major and thalassemia intermedia regarding urinary β2 microglobulin level.	78
(12)	Distribution of chelation therapy in thalassemia major and thalassemia intermedia patients.	80
(13)	Comparison between thalassemia major	82

(1880) 1880 1880 1880 1880 1880 1880 1880	and thalassemia intermedia regarding age at first blood transfusion.	(B) 1881 1887 1887 1887 1887 1887
(14)	Distribution of hepatosplenomegaly and prevelance of splenectomy among thalassemia major and thalassemia intermedia patients.	86
(15)	Distribution of puberty in thlassemia major and thalassemia intermedia patients.	86
(16)	Comparison between well chelated and poorly chelated groups regarding serum ferritin level.	89
(17)	Comparison between well chelated and poorly chelated groups regarding transfusion index.	90
(18)	Correlation between serum ferritin and transfusion index in among all the studied patients.	92
(19)	Correlation between serum ferritin and urinary 2 microglobulin in all the study patients.	94
(20)	Correlation between transfusion index and urinary 2 microglobulinin in all the study patients.	96
(21)	Correlation between duration of chelation and tubular reabsorption of phosphorus in thalassemia intermedia	103

List of tables

Table	Title	Page
(1)	Composition of embryonic, fetal and adult hemoglobin.	9
(2)	Genetic basis and clinical manifestations of common -thalassemia syndromes.	17
(3)	Monitoring protocol for children with thalassemia major.	28
(4)	Causes of death in patients with -thalassemia.	29
(5)	Characters of iron chelating agents.	43
(6)	Normal values of GFR in pediatrics	68
(7)	The demographic data of all the study patients.	<i>75</i>
(8)	The laboratory parameters of all the study patients.	76
(9)	Comparison of laboratory parameters among TM and TI patients.	77
(10)	Comparison of chelation use and compliance among TM and TI patients.	79
(11)	Comparison of demographic data among TM and TI patients.	81
(12)	Comparison of weight, height and body mass index percentiles between TM and TI groups.	83
(13)	Comparison of different complications among TM and TI patients.	85
(14)	Comparison of compliance to chelation therapy between well chelated and poorly chelated group of TM patients.	87

(15)	Comparison of complications between well chelated and poorly chelated groups.	88
(16)	Comparison between well chelated and poorly chelated groups regarding serum ferritin and transfusion index.	89
(17)	Comparison of renal functions between well chelated and poorly chelated groups.	91
(18)	Correlation between s.ferritin and hematological parameters among all the studied patients.	92
(19)	Correlation between s.ferritin and lab parameters in all the study patients.	93
(20)	Correlation between chelation therapy and transfusion index in all the study patients.	95
(21)	Correlation between transfusion index and urinary 2 microglobulin in all the study patients.	96
(22)	Correlation between chelation therapy and s.ferritin in all the study patients.	97
(23)	Correlation between chelation therapy and serum parameters of kidney functions in thalassmia major patients.	98
(24)	Correlation between chelation therapy and serum parameters of kidney functions in thalassemia intermedia patients.	99
(25)	Correlation between chelation and urinary parameters of kidney function in thalassemia major patients.	100
(26)	Correlation between chelation therapy and urinary parameters of kidney function in thalassemia intermedia patients.	102
(27)	Correlation between chelation therapy and s.ferritin among TM &TI patients.	104

(28)	Correlation between chelation therapy and complications in thalasemia major patients.	105
(29)	Correlation between chelation therapy and complications in thalassemia intermedia patients.	106

Introduction

Beta thalassemia major is a type of chronic, inherited, microcytic anemia that is characterized by impaired biosynthesis of beta-globin leading to accumulation of unpaired alpha-globin chain (*Jalali et al.*, 2011).

Patients with -thalassemia major receive blood transfusion regularly. Repeated blood transfusions, however, do not come without their own side effects as iron overload inevitably manifests resulting in multiple organ damage, notably in the heart, liver and endocrine glands (*Taher et al.*, 2009). Safe blood transfusion and iron chelation therapy is surely translated into prolonged survival and enhanced quality of life in patients with -thalasemia major (*Borgna-Pigatti et al.*, 2004).

-thalassemia intermedia is a term used to define a group of patients with -thalassemia in whom the clinical severity of the disease is somewhere between the mild symptoms of -thalassemia trait and the severe manifestations of -thalassemia major (*Cohen et al.*, 2004). The diagnosis is a clinical one based on the patient maintaining a satisfactory hemoglobin level at least 6-7g/dl at time of diagnosis without the need for regular blood transfusion. Iron overload is a potential complication of -thalassemia intermedia (*Smoklin et al.*, 2008).

Limited data are available about renal involvement in thalassemic patients (*Oktenli and Bulueu*, 2002). Renal dysfunction in these patients is not known well and seems to be multifactorial; attributed mainly to long-standing anemia, chronic hypoxia, iron overload and toxicity of iron chelators (*Koliakos et al.*, 2003).

Introduction & Aim of work

Anemia is associated with oxidative stress which contributes to lipid peroxidation and tubular cell dysfunction (*Nagababu et al.*, 2008). Also there is evidence that anemia may cause hyperdynamic circulation, glomerular hyperperfusion and hyperfiltration which can lead to stretching of the glomerular capillary wall, resulting in endothelial and epithelial injury which by time may cause a marked decline in glomerular filtration rate (*Ponticelli etal.*, 2010).

Hypoxia of the tubular cells secondary to anemia can cause apoptosis or epithelial-mesenchymal transdifferentiation leading to fibrosis of the kidney (*Nangaku et al.*, 2006).

Iron overload may cause lipid peroxidation of the tubular cells and generation of oxygen free radicals which in term can lead to tubular cell injury or death (*Kassab-Chekir et al.*, 2003).

Cases of acute renal failure requiring dialysis have been reported after deferoxamine overdose secondary to pump malfunction or inadequate dose monitoring during treatment (*Clajus et al.*, 2008). Cases of acute kidney injury have also been reported in the post-markting surveillance of the novel oral chelator deferasirox (*Grange et al.*, 2010).

There have been few published studies demonstrating proteinuria, aminoaciduria, low urine osmolarity and excess secretion of the proximal tubular damage markers such as N-acetyl -D-glucosaminidase and 2 microglobulin in such patients (*Aldudak et al., 2000*). In addition, serum sodium, potassium, phosphorus, uric acid and urinary protein to creatinine ratio were found to be significantly different from normal reference ranges (*Oktenli and Bulueu, 2002*).

Aim of the work

To assess renal functions in patients with -thalassemia major and -thalassemia intermedia in correlation with iron overload and type of chelator in order to detect early deterioration of renal functions.