Assessment of Nutritional Status of the Critically III Patients at Abbassia Respiratory Intensive Care Unit

Thesis
Submitted to partial fulfillment of the Master degree in
Chest disease

By
Rasha Mohamed Reda Al- Dahshoury

M.B, B.Ch Under supervision of

Prof. Taher Abd El Hamed El Naggar

Professor of Chest Diseases
Faculty of Medicine Ain Shams University

Dr. Nermine Mounir Riad Abd El Azim

Lecturer of Chest Diseases
Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2012

Acknowledgment

First and foremost, I feel always indebted to ALLAH, who always helps and cares for me to accomplish this work successfully.

No words can adequately assure my deepest thanks to

Prof. Taher Abd El Hamed El Naggar, Professor of Chest Diseases Faculty of Medicine Ain Shams University, for his sincere guidance, constructive suggestions, continuous encouragement, and his great advice for the fulfillment of the study.

I would like to express my sincere thanks and deepest appreciation and gratitude to **Dr. Nermine Mounir Riad Abd El**Azim, Lecturer of Chest Diseases Faculty of Medicine Ain Shams University, for her great support, flexibility, creative guidance and she offered me very useful references, which helped a great deal in the interpretation and discussion to accomplish this work.

Last but not least, I wish to express my deepest and sincere thanks to my family who were always beside me giving me all form of support to accomplish this work.

The candidate Rasha Mohamed Reda Al- Dahshoury

List of contents

Subject	Page
Introduction	1
Aim of The Work	2
Review of literature	
Chapter 1: Nutrition	3
Chapter 2: Nutrition in the ICU	16
Chapter 3: Nutrition support in critically illpatients	34
Chapter 4: Enteral Nutrition	42
Chapter 5: Parenteral Nutrition	
Chapter 6: Assessment of Nutritional status	
Subjects and Methods	123
Results	166
Discussion	178
Summary	207
Conclusion	245
Recommendation	249
References	250
Arabic Summary	

☐ List of Cables

List of Tables

No.	Title	
1	The energy yield of metabolic fuels	7
2	Equations for estimation of BMR from weight or weight and height at different ages	9
3	The percent of energy from different metabolic fuels of the average British diet compared with dietary guidelines.	15
4	Clinical characteristics of overfeeding syndrome.	40
5	Clinical characteristics of refeeding yndrome.	41
6	Potential complications of tube feeding	51
7	Comparison between different sites of delivery of enteral feeding	85
8	Enteral nutrition formulations	73
9	American medical associations and food and drug administrations recommendations for parenteral vitamins intake.	108
10	Daily parenteal trace elements for adults	111
11	Clinical features of the common acute trace elements and vitamins deficiency state which may become apparent during	111

☐ List of Cables

12	Trace elements availability in standard formulations and modified requirements in ICU patients.	112
13	Daily electrolytes recommendations	116
14	Evaluation of weight change	136
15	Elbow breadth as indicator of body frame size.	137

☐ List of Figures

List of figures

No.	Title	Page
1	Nutritional classification of carbohydrates	12
2	Glucose metabolism	20

List of abbreviations

AA	Amino acids
AC	Arm circumference
Alb	Albumin
ALI	Acute lung injury
APACHE	Acute Physiology and Chronic Health
	Evaluation
ARF	Acute renal failure
ASPEN	American Society of Parenteral and Enteral
	Nutrition
ATP	Adenosine triphoshate
BCAA	Branched chain amino acids
BM I	Body mass index
BMR	Basal metabolic rate
BUN	Blood urea and nitrogen
Ca	Calcium
CBW	Current body weight
СНІ	Creatinine height index
СНО	Carbohydrate
Cm	Centimeter
Co2	Carbon dioxide
Cr	Creatinine
CRP	C- reactive protein
CRRT	Continuous renal replacement therapy
CSCN	Canadian nutrition society
CVP	Central venous catheter
DIT	Diet induced thermogenesis
2,3 DPG	Diphosphoglycerate
EFAD	Essential fatty acids deficit
EN	Enteral nutrition

☐ List of Abbreviations

EPA	Eicosa pentaenoic acid
ESPEN	European Society of Parenteral and
	Enteral Nutrition
ETF	Enteral tube feeding
FA	Fatty acids
G	Gram
GALT	Gut associated lymphoid tissue
GE	Gastric emptying
GLA	Gamm linoleic acid
GPX	Glutathione peroxidase
GRV	Gastric residual volume
Ht/H	Height
НВ	Harris Benedict equation
ICU	Intensive Care Unit
IEI	Integrated energy index
IL	Interlukin
IU	International unit
IV	Intravenous
IVFE	Intravenous fat emulsion
JJ	Surgical jeujenostomy
K	potassium
Kcal	Kilocalorie
Kg	Kilogram
LCT	Long chain triglycerides
LOS	Length of stay
MAC	Mid arm circumference
MALT	Mucosl associated lymphoid tissue
MAMA	Mid arm muscle area
MAMC	Mid arm muscle circumference
Mcg	microgram
MCT	Medium chain triglycerides

List of Abbreviations

MEq	Milli equilibrium
Mg	Magnesium
Mg	milligram
Ml	milliliter
Mm	millimeter
MNA	Mini nutritional assessment
MODS	Multiorgan Syndrome
MUAC	MID Upper Arm Circumference
MV	Mechanical Ventilation
Na	Sodium
NGT	Nasogastric Tube
NJT	Naso Jeujenal Tube
NPO	Nothing Per Oral
OBW	Optimal Body Weight
OGT	Orogastric Tube
P	Phosphate
PAR	Physical Activity Ratio
PEG	Percutaneous Endoscopic Gastrostomy
PEJ	Percutaneous Endoscopic Gastrostomy
	With Jeujenal Extension
PEM	Protein Energy Malnutrition
PICCS	Peripherally Inserted Central Catheters
PN	Parenteral Nutrition
PT	Prothrombin Time
PTT	Partial Thromboplastin Time
REE	Resting Energy Expenditure
RES	Reticulo-Endothelial System
RMR	Resting Metabolic Rate
SAPS	Simplified Acute Physiology Score
SFT	Skin Fold Thickness
SIADH	Syndrome Of Inappropriate Adh

☐ List of Abbreviations

	Secretion
SOFA	Sequential Organ Failure Assessment
TBW	Total Body Water
TEE	Total Energy Expenditure
TG	Triglycerides
TF	Transferrin
TLC/ TLymC	Total Lymphocytic Count
TNF	Tumor Necrosis Factor
TOBEC	Total Body Electrical Conductivity
TOF	Trans-Esophageal Feeding Tube
TPN	Total Parenteral Nutrition
TSF/ TST	Triceps Skin Fold Thickness
UBW	Usual Body Weight
USDA	United States Of Department Of
	Agriculture
UUN	Urinary Urea And Nitrogen
W	Weight
WC	Waist Circumference

Introduction

Although severity of illness is the single most important predictor of survival in critically ill patients, many questions exists about the contribution of nutritional status and the role of nutritional support to patients' outcomes (*Hill et al.*, 1995).

Nutritional support critically ill patients are often suboptimal, due to problems with both nutrient prescription and delivery (O'leary- Kelly et al., 2005).

Many critically ill patients are hypermetabolic and have increased nutritional needs, yet research on nutritional supplementations and the relationship of supplementations to clinical outcomes has produced mixed findings. (Mechanick et al., 2002)

The relationship between nutritional status and patients' outcomes is of particular interest in chronically critically ill patients, that is, patients who survive the lifethreatening phase of critical illness but have prolonged hospitalizations because of their dependence on critical care support services (*Daly et al.*, 1991).

Nutritional status is a multidimensional phenomenon that requires several methods of assessment, including nutrition related health indicators, nutritional intake, and energy expenditure (*Lee et al.*, 2003).

Aim of the work

To assess the nutritional status of critically ill patients admitted at Abbassia Respiratory Intensive Care Unit (RICU) and correlate it with the patients' final outcome.

Nutrition

Definitions:

Nutrition:

It is the science of food and its relationship to health.

Nutritional science:

These are sciences that deal with the natures and distribution of nutrients in food, their metabolic effects and the consequences of inadequate food intake.

Nutrients:

These are chemical compounds in food that are absorbed and used to promote health. They are generally divided into:

- 1) Macronutrients: they constitute the bulk of the diet and supply energy as well as essential nutrients needed for growth, maintenance and activity. They include CHO, fats, proteins, macro minerals (sodium, chloride, potassium, calcium, magnesium and phosphorus), and water.
- 2) Micronutrients_include vitamins and trace elements

3) Other dietary substances:

- Food additives e.g. preservatives emulsifiers, antioxidants, and stabilizers.
- Fiber.

Clinical nutrients:

It is the application of the principal of nutrition science and medical practice to the diagnosis, treatment, and prevention of human disease caused by the deficiency, excess, or metabolic imbalance of nutrition (*Beers and Berkow*, 1999).

Biochemical background

Definitions:

Intermediary metabolism:

It is the sum total of all enzymatic reactions occurring in the cell and has four specific functions:

- 1. To obtain chemical energy from fuel molecules.
- 2. To convert exogenous nutrients into building blocks of macro-molecular cell components.
- 3. To assemble such blocks into proteins, nucleic acids, lipids and other cell components.