EVALUATION OF ISOKINETIC PARAMETERS AND CORE STABILITY IN SWIMMERS WITH AND WITHOUT SWIMMER'S SHOULDER SYNDROME

By BASSAM AHMED NABIL ABD ELMABOUD

Thesis

Submitted to the Department of Biomechanics in Partial Fulfillment of the Requirements for Master Degree in Physical Therapy

Supervisors

Prof. Dr. Salam Mohamed Elhafez

Assistant Professor of Biomechanics
Department of Biomechanics
Faculty of Physical Therapy
Cairo University

Dr. Nagui Sobhi Nassif

Lecturer of Biomechanics Department of Biomechanics Faculty of Physical Therapy Cairo University

Dr. Ahmed Salama Yamani

Lecturer of Biomechanics Department of Biomechanics Faculty of Physical Therapy Cairo University

Faculty of Physical Therapy Cairo University 2010

"تقييم الخواص الايزوكينيتيكية والثبات المحوري لدى السباحين الأصحاء والمصابين بمتلازمة كتف السباح

رسالة مقدمة من الباحث/ بسام أحمد نبيل عبد المعبود المعيد بقسم الميكانيكا الحيوية بكالوريوس علاج طبيعي - جامعة ٦ أكتوبر، ٢٠٠٤

> للحصول على درجة الماجستير في العلاج الطبيعي

هيئة الإشراف

د. ناجی صبحی نصیف

ا.د.سلام محمد الحافظ

كلية العلاج الطبيعي جامعة القاهرة

أستاذ مساعد بقسم الميكانيكا الحيوية مدرس بقسم الميكانيكا الحيوية كلية العلاج الطبيعي جامعة القاهرة

> د. أحمد سلامة يماني مدرس بقسم الميكانيكا الحيوية كلية العلاج الطبيعي جامعة القاهرة

> > كلية العلاج الطبيعى جامعة القاهرة ۲.1.

موجز الرسالة

عنون البحث: تقييم الخواص الأيزوكينيتيكية والثبات المحورى لدى السباحين الأصحاء والمصابين بمتلازمة كتف السباح.

هدف البحث: يهدف هذا البحث إلى مقارنة الخواص الأيزوكينيتيكية والثبات المحورى لعضلات حزام الكتف والجزع لدى السباحين الأصحاء والمصابين بمتلازمة كتف السباح مما قد يفيد في تقييم وعلاج ومتابعة مستوى أداء السباحين وتجنب الإصابة وكذلك تعديل الحمل التدريبي مما يتوافق مع الخواص العضاية لحزام الكتف والثبات المحورى ومتطلبات التدريب

مجال البحث:

المجال البشري:

أجريت هذه الرسالة على ثلاثون متطوعاً من السباحين

المجال الزمنى:

استغرقت هذه الرسالة حوالي خمسة وعشرون شهراً في أداء الجزء العملي و كتابة الجزء النظري في الفترة ما بين $(3 - 7 \cdot 1 \cdot 1)$ إلى $(3 - 7 \cdot 1 \cdot 1)$

الفصل الأول:

احتوى هذا الجزء على الإشارة إلى مشكلة البحث و الهدف منه و الفائدة العائدة على المجال العلمي و العملي من نتائج هذا البحث ثم تصغير المشكلة.

الفصل الثاني:

احتوى هذا الفصل على مقدمة للتشريح الوظيفى و ميكانيكا المرض. والدرسات التحليليه الوصفيه كذلك احتوى على الدراسات السابقة و التي تمت و أجريت حول هذا الموضوع و النتائج المختلفة حول هذا الموضوع. كما احتوى أيضاً على التعريف بجهاز القياسات الأيزوكينيتيكية والثبات المحورى.

الفصل الثالث:

يشمل هذا الفصل على شرح الوسائل و الطرق التي استخدمت في إجراء هذه الدراسة و توضيحها بالصور. أيضاً هذا الفصل يحتوي على كيفية اختيار العينة من الأشخاص الذين أجريت عليهم التجربة.

الفصل الرابع:

احتوى هذا الفصل على النتائج التي تم التوصل إليها من هذه الدراسة و قد تم صياغة النتائج و البيانات في شكل صور جدولية و رسومات بيانية لسهولة الفهم و المقارنة.

الفصل الخامس:

ناقش هذا الفصل النتائج المتوصل إليها من هذه الدراسة و تم تفسيرها مستنداً على الركائز العلمية و الدراسات السابقة.

الفصل السادس:

احتوى هذا الفصل على ملخص الرسالة و خلاصة ما توصلت إليه الدراسة و بعض الأفكار التي يمكن إجرائها في هذا المجال مستقبلاً.

الفصل السابع: اشتمل على المراجع و المجلات العلمية التي تم الاستناد إليها.

موجز الرسالة

عنون البحث: تقييم الخواص الأيزوكينيتيكية والثبات المحوري لدى السباحين الأصحاء والمصابين بمتلازمة كتف السباح.

هدف البحث: يهدف هذا البحث إلى مقارنة الخواص الأيزوكينيتيكية والثبات المحوري لعضلات حزام الكتف والجزع لدى السباحين الأصحاء والمصابين بمتلازمة كتف السباح مما قد يفيد في تقييم وعلاج ومتابعة مستوى أداء السباحين وتجنب الإصابة وكذلك تعديل الحمل التدريبي مما يتوافق مع الخواص العضاية لحزام الكتف والثبات المحوري ومتطلبات التدريب

مجال البحث:

المجال البشري:

أجريت هذه الرسالة على ثلاثون متطوعاً من السباحين

المجال الزمنى:

استغرقت هذه الرسالة حوالي خمسة وعشرون شهراً في أداء الجزء العملي و كتابة الجزء النظري في الفترة ما بين (3-7.0) إلى (3-7.0)

الفصل الأول:

احتوى هذا الجزء على الإشارة إلى مشكلة البحث و الهدف منه و الفائدة العائدة على المجال العلمي و العملي من نتائج هذا البحث ثم تصغير المشكلة.

الفصل الثاني:

احتوى هذا الفصل على مقدمة لعلم التشريح الوظيفي و ميكانيكا المرض. كذلك احتوى على الدراسات السابقة و التي تمت و أجريت حول هذا الموضوع و النتائج المختلفة حول هذا الموضوع. كما احتوى أيضاً على التعريف بجهاز القياسات الأيزوكينيتيكية والثبات المحوري.

الفصل الثالث:

يشمل هذا الفصل على شرح الوسائل و الطرق التي استخدمت في إجراء هذه الدراسة و توضيحها بالصور. أيضاً هذا الفصل يحتوي على كيفية اختيار العينة من الأشخاص الذين أجريت عليهم التجربة.

الفصل الرابع:

احتوى هذا الفصل على النتائج التي تم التوصل إليها من هذه الدراسة و قد تم صياغة النتائج و البيانات في شكل صور جدولية و رسومات بيانية لسهولة الفهم و المقارنة.

الفصل الخامس:

ناقش هذا الفصل النتائج المتوصل إليها من هذه الدراسة و تم تفسيرها مستنداً على و الدر اسات السابقة الركائز العلمية

الفصل السادس:

احتوى هذا الفصل على ملخص الرسالة و خِلاصة ما توصلت إليه الدراسة و بعض الأفكار التي يمكن إجرائها في هذا المجال مستقبلاً.

الفصل السابع: اشتمل على المراجع و المجلات العلمية التي تم الاستناد إليها.

ACKNOWLEDGEMENT

First and before my praise, I would like to kneel thanking Allah, the most compassionate and most merciful for his guidance, motivate and support. Allah gave me the insight and helps me to accomplish this work

I would like to express my grateful thanks to **Prof. Dr.**Mohamed Fouad Ibrahim Khalil, Professor of Biomechanics,

Department of Biomechanics, Faculty of Physical Therapy, Cairo

University for his kind guidance, encouragement and teaching us the research principles.

Warmest and honest thanks are devoted to **Prof. Dr. Salam**Mohammed El Hafez, Assistant Professor of Biomechanics,
Department of Biomechanics, Faculty of Physical Therapy, Cairo
University, for the sincere advices and precious time. She gave me
the encouragement to complete, review, helpful and unlimited
guidance this work.

I would like also to express a special appreciation and sincere gratitude to Dr. Nagui Sobhi Nassief, Lecturer of Biomechanics, Department of Biomechanics faculty of Physical Therapy, Cairo University who provided me with his helpful, guidance and advices during fulfilling this work.

My gratitude is extended to **Dr. Ahmed salama ymani**, lecturer of Biomechanics, Department of Biomechanics Faculty of Physical Therapy, Cairo University for his supervision and help.

Words fail to express my gratitude, respect and appreciation to Prof. Dr. Ghada Mohammed Elhafez, Assistant Professor of Biomechanics, Department of Biomechanics Faculty of Physical Therapy, Cairo University for her support, encouragement, bright ideas and kind help. She is always giving me confidence and motivation to work harder.

Many thanks go to **Dr. Ahmed yousry Radwan**, lecturer of Biomechanics, Department of Biomechanics Faculty of Physical Therapy, Cairo University for his guidance and help. **Dr. Sobhi Mahmoud**, Assistant lecture of Biomechanics, Department of Biomechanics Faculty of Physical Therapy, Cairo University for his guidance in statistics, and all members of my small family at the Department of Biomechanics for their valuable comments, assistance and support during the preparation of this study and in statistic.

I would like also to express a special appreciation and practical assistant in lab to Dr. Kaderia Hosseni Mohamed, lecturer of Basic Science, Department of Basic sciences Faculty of Physical Therapy, Cairo University and Dr. Magda Gied Assistant lecture of Basic Sciences, Department of Basic Sciences Faculty of Physical Therapy, Cairo University who provided me with his unlimited helpful, and assist me in isokinetic lab during fulfilling this work.

Thanks not enough to express my gratitude, respect and appreciation to **Prof. Dr. Mohammad Sadik Badawy**, Dean of the Faculty of Physical Therapy- October 6 University University for his kind guidance, encouragement and teaching us the research principles and. **Saher Abou Zeid**, Executive secretary of the Faculty of Physical Therapy- October 6 University for help.

Many thanks go to **Dr. Ahmed Yosuef** and **Coach Medhat Sabery**, advanced swimming trainer in October club and all members who assistance and support during the preparation of this stud.

Finally, my best regards are devoted to my parents, brothers, sister and fiancee who greatly encouraged me to conduct this work.

Evaluation of Isokinetic Parameters and Core Stability in Swimmers with and without Swimmer's Shoulder Syndrome / Bassam Ahmed Nabil Abd Elmaboud: 6 October University, Faculty of Physical Therapy. Department of Biomechanics. Supervisors: Prof DR. Salam Mohammed ElHafez, Dr. Nagui Sobhi Nassief, and Dr. Ahmed Salama Yamani. Thesis: M Sc: Biomechanics, 2010.

Abstract:

Swimmer's Shoulder syndrome (SSS) is the most common condition affecting both competitive and recreational swimmers and surfers. It is basically an overuse injury. The purposes of this study were to analyze the difference between normal swimmers and swimmers with shoulder problems (swimmer's shoulder syndrome) in shoulder isokinetic parameters, scapula isokinetic parameters, arm isokinetic parameters, trunk isokinetic parameters, agonist/antagonist ratio after maximal ten repetition at two velocities (60°/sec and 180°/sec) and to examine the relationship between shoulder external rotation peak torque and lumbar extension peak torque, pain level, Sahermann test, and unilateral bridge test. Thirty volunteer swimmers of both sexes, were divided into two groups: control group of 15 swimmers have no history of shoulder pain or instability and an experimental group of 15 matching swimmers suffering from SSS. Swimmers were examined by a) VAS for pain, b) Functional core stability score for core stability and c) Isokinetic assessment for peak torque and agonist/antagonist ratio recorded for shoulder, scapula, arm, trunk and lumbar movements. Data were analyzed using SPSS program and using repeated measure of MANOVA with alpha level set at p<0.05. Results revealed that swimmers with SSS had significant decreases in shoulder external rotation, lumbar extension, and all functional core stability tests compared to the control group. There was a significant increase in the pain level in swimmers with SSS compared with the control group. Moreover, external/internal rotation ratio, scapular protraction/retraction ratio, lumbar extension/flexion ratio decreased significantly in the experimental group compared with control group. On the other hand the shoulder external rotation peak torque at (60°/sec) has a significantly positive correlation with lumbar extension peak torque, Sahermann test and unilateral bridge. Despite the importance of swimming as a sport, it produces muscular imbalances between flexors/extensors of the trunk, internal/external rotators of the shoulder. Care must be directed towards improving muscle balance more than concentrating strength towards one group of muscles.

Keywords: Swimmer's Shoulder Syndrome, Isokinetic, Core stability.

TABLE OF CONTENTS

Abstract	Ι
Table of contents	II
List of table	IV
List of figures	VI
List of abbreviation	X
CHAPTER I: INTRODUCTION	1
Statement of the problem	4
Purposes of the study	5
Significance of the Study:	5
Delimitation	6
Limitations	6
Basic Assumptions	7
Hypotheses	7
CHAPTER II: LITERATURE REVIEW	8
2-1-Functional anatomy and mechanics	9
2-1-1 Scapulothoracic Joint Kinematics	10
2-1-2- Scapulothoracic Joint Kinetics	13
2-1-3-Glenohumeral Joint kinematics	15
2-1-3-1-The glenoid concavity	17
2-1-3-2-The Glenoid	18
2-1-4- Glenohumeral Joint kinetics	18
2-1-4-1-The shoulder Muscle	18 24
2-1-4-3-The Glenohumeral Ligaments and Caps	24 25
2-1-4-3-The Glenontaneral Eiganients and Caps 2-1-4-4- Adhesion-Cohesion and the Suction Cup	27
2-2-The Safe Zone of shoulder	28
2-3-Swimmer floating	29
2-4-Biomechanics of Swimming	31
2-5-Mechanics of Freestyle swimming (kinematic)	32
2-5-1- Pull-through stage (Propulsion)	33
2-5-2- Recovery stage	33
2-6-Swimmer's shoulder syndrome	34
2-6-1-Pathomechanics Pattern in a Swim Stroke	35
2-6-1-1- In hand entry	35
2-6-1-2 In the mid-pull-through phase	36
2-6-2-Muscle Imbalances	37
2-6-3-Instability	39
2-6-4-Hyper mobility:	40
2-6-5-Scapular Dyskinesis:	42

2-6-6-Posterior capsule tightness	46
2-7-Proximal segment control	47
2-8-Isokinetic	49
2-9-Core stability	55
2-10-Measuring Core Stability	58
CHAPTER III: MATERIALS AND METHODS	60
Subject selection	60
Instrumentation	62
1-Biodex isokinetic dynamometer system "system 3pro"	62
2) Universal (Standard) medical scale	65
3) Universal Plastic Goniometry	65
4) Visual Analogue Scale (VAS)	66
5) Sphygnomanometer	66
6) Recording data sheet	67
7) Water scale	67
Procedures	68
1st Stage of assessment	68
Pain assessment	68
Functional core stability score:	69
I- Pre-experimental (Preparatory) phase	70
II- Experimental phase	73
2 ^{ndst} Stage of assessment (isokinetic assessment)	79
I- Pre-experimental (Preparatory) phase	79
A) Shoulder external rotation and internal rotation	82
B) Scapulothoracic Testing (Scapula protraction and retraction)	
C) Arm diagonal inward movement and diagonal outward	88
D) Lumbar flexion and extension test	91
II- Experimental phase	94
III- Analysis of the recording	94
IV- statistical analysis	95
Design of the study: Cross sectional design	95
CHAPTER IV: RESULTS	96
01211 1211 / 1218 0 0 8 8 1 0 1 ()	118
CHAPTER IV: SUMMARY, CONCLUSION &	
IMPLEMENTATION	145
REFERENCES	148
APPENDICIS	170
ARABIC SUMMARY	

LIST OF TABLE

Chapter: 4

Table Ma	Tialo	Dogo
Table No	Title	Page No
Table 4-1	Physical characteristics for both groups (A&B).	99
	Repeated measures MANOVA of peak torque	101
Table 4-2	(Nm) of dominant shoulder external and	
1 abie 4-2	internal rotation measured at angular velocities	
	(60°/sec) and (180°/sec) for both groups.	
	Shoulder external rotation/internal rotation	102
Table 4-3	ratio at (60°/sec) and (180°/sec) in the	
	control and experimental groups.	
	Repeated measure MANOVA of peak torque	103
Table 4-4	values for Scapular Protraction and retraction	
	for both groups.	
	Scapular protraction/retraction ratio at (60°/sec)	104
Table 4-5	and (180°/sec) in the control and experimental	
	groups.	
	Repeated measure MANOVA peak torque	105
Table 4.6	values for dominant arm diagonal away and	
Table 4-6	toward were measured at angular velocities	
	(60°/sec) and (180°/sec) for both groups.	
	Arm diagonal outward/arm diagonal inward	106
Table 4-7	ratio at velocity (60°/sec) and (180°/sec) in the	
	control and experimental groups.	
	Repeated measures MANOVA for peak torque	108
Table 4-8	values (Nm) of lumbar extension and flexion	
1 abic 4-0	measured at angular velocities (60°/sec) and	
	(180°/sec) for both groups.	
	Lumbar extension/lumbar flexion ratio at	108
Table 4-9	velocity (60°/sec) and (180°/sec) in the control	
	and experimental groups.	
Table 4-10	Repeated measures MANOVA values for	111
14010 1 10	Functional core stability score for both groups.	
	Repeated measures MANOVA values of visual	113
Table 4-11	analogue scale (VAS) revealed levels of pain	
	for both groups.	44.
	Repeated measure MANOVA correlation	114
Table 4-12	Analysis was between the shoulder external	
	rotation at (60°/sec) and lumbar extension at	
	(60°/sec) in experimental group.	

Table 4-13	Repeated measure MANOVA correlation Analysis was between the shoulder external rotation at (60°/sec) and VAS in experimental	115
	group.	11/
Table 4-14	Repeated measure MANOVA correlation Analysis was between the shoulder external rotation at (60°/sec) and Sahermann test in experimental group.	116
Table 4-15	Repeated measure MANOVA correlation Analysis was between the shoulder external rotation at (60°/sec) and unilateral bridge test in experimental group.	117

LIST OF FIGURES

Chapter: 2

Figure No	Title	Page No
Figure 2-1	Scapular translation; A: Elevation and depression of right scapula. B: Protraction and retraction of right scapula (Adopted from Muscolino 2006).	11
Figure 2-2	Upward rotation of shoulder girdle 'scapulohumeral rhythm (Adopted from Muscolino2006).	12
Figure 2-3	Force couple between trapezius and serratus anterior (Adopted from Mansfield, and Neumann 2009).	14
Figure 2-4	The glenoid concavity (Adopted from Matsen et al., 2006).	17
Figure 2-5	The glenoid center line (Adopted from Matsen et al., 2006).	18
Figure 2-6	A: Active shoulder stabilizer from anterior view. B posterior view (Adopted from Mansfield, and Neumann 2009).	19
Figure 2-7	Compressive mechanism (Adopted from Matsen et al., 2006).	22
Figure 2-8	Centers of rotation (Adopted from Matsen et al., 2006).	25
Figure 2-9	Hypothetical graph is showing the interplay between muscular and capsular tension. As the humerus is passively externally rotated, the force that the subscapularis can generate drops off while the force generated by the anterior capsular ligaments increases in a complementary manner (Adopted from Matsen et al., 2006).	27
Figure 2-10	Safe zones of shoulder, A: Sagittal plane. B: Transverse plane (Adopted from Harding 1993).	28
Figure 2-11	A: A torque is created on swimmer by body weight. B: When the center of gravity and center of volume are aligned.(Adopted from Hall (1999).	30
Figure 2-12	Stage of pull through (Adopted from O'Donnell et al 2005).	33

Figure 2-13	Stage of recovery (Adopted from O'Donnell	34
	et al 2005).	
Figure 2-14	A: A swimmer demonstrates a dropped	36
	elbow during recovery stage. B: A swimmer	
	demonstrates a high elbow (Adopted from	
	O'Donnell et al., 2005).	
Figure 2-15	A: A swimmer demonstrates incorrect flat	37
	body (not roll to side to side properly)	
	position with excessive crossing over during	
	pull through stage. B: A swimmer	
	demonstrates proper midline hand position	
	(Adopted from O'Donnell et al., 2005).	
Figure 2-16	A: The supraspinatus muscle functions	41
0	normally as it compresses the head of the	
	humerus. B: impingement of supraspinatus	
	muscle in the subacromial space posterior	
	view (Adopted from Mansfield, and	
	Neumann 2009).	
Figure2-17	Length tension relationship (Adopted from	53
J	Muscolino2006).	

Chapter: 3

Figure No	Title	Page No
Figure 3-1	Biodex isokinetic dynamometer (system 3) and its component, A-The computer unit, B-The dynamometer, and C-The seat.	64
Figure 3-2	Closed chain attachment used for shoulder complex (scapulothoracic) assessment.	65
Figure 3-3	Universal plastic Goniometry.	65
Figure 3-4	Visual Analogue Scale (VAS).	66
Figure 3-5	Medical sphygmomanometer.	66
Figure 3-6	Water scale.	67
Figure 3-7	Starting position of Sahermann test (90° hip flexion).	74