New trends in Sleeve Gastrectomy as Management for Morbid Obesity

Essay

Submitted by Alaa Mohamed Adel Al-Kashef M.B.B.CH

In Partial Fulfillment of the Master Degree in Surgery

Supervised By

Prof. Dr/ Alaa Abbas Sabry Mostafa

Professor of General Surgery Faculty of medicine Ain Shams University

Dr/ Mohamed El-Sayed El-Shinawi

Assistant Professor of General Surgery Faculty of Medicine Ain Shams University

> Faculty of medicine Ain Shams University 2015

List of Contents

List of Abbreviations	II
List of Figures	V
List of Tables	VIII
Introduction and Aim of the work	
Chapter 1 Definition, Etiology & Classification of morbid Obesity	1
Chapter 2 Patho-physiology and complications of morbid obesity	26
Chapter 3 Management of morbid obesity	48
Chapter 4 New trends for sleeve gastrectomy	69
Summary and Conclusions 10	
References	

Arabic Summary

List of Abbreviations

ABMI Adjusted Body Mass Index

AGB Adjustable Gastric Banding

AGRP Agouti-related Protein

ASGB Adjustable Silicon Gastric Banding

ATPIII Adult Treatment Panel III

BBB Blood Brain BarrierBMI Body Mass Index

BPD-DS Bilio-Pancreatic Diversion with Duodenal Switch

CCK Cholecystokinin

CHD Coronary Heart Disease

CO₂ Carbon Dioxide

CRH Corticotropin-releasing hormone

CRP C reactive protein

CSF Cerebral Spinal FluidCT Computed TomographyCVD Cardiovascular DiseaseDBP Diastolic Blood Pressure

DJB-SG Duodeno–Jejunal Bypass with Sleeve

Gastrectomy

DS Dudenal Switch

ED Emergency Department

EWL Excess Weight Loss

FPG Fasting Plasma Glucose

GABA Gamma AminoButyric Acid GEJ GastroEsophageal Junction

GH Growth Hormone

GIWLS Gastro Intestinal Weight Loss Surgery

GLP1 Glucagons-like Peptide 1HDL High Density-Lipoprotein

HDL-C High Density Lipoprotein Cholesterol

HOMA Homeostasis Model Assessment

IASO International Association for the Study of Obesity

IGS Implantable Gastric StimulatorIOTF International Obesity Task Force

LAGB Laparoscopic Adjustable Gastric Banding

LASGB Laparoscopic Adjustable Silicone Gastric

Banding

LDL Low Density Lipoprotein

LDL-C Low Density Lipoprotein Cholesterol

LOS Length of Stay

LSG Laparoscopic Sleeve Gastrectomy

LVBG Laparoscopic Vertical Banded Gastroplasty

MCH Melanocortin Hormone

MDCT Multidetector–Row Computed Tomography

MetS Metabolic SyndromeMH Metabolic Health

MHO Metabolically Healthy Obese

MM Magenstrasse and Mill Procedure

MONICA Multinational Monitoring of Trends and

Determinants in Cardiovascular Disease

MRI Magnetic Resonance Imaging

MSH Melanocyte Stimulating Hormone NAFLD Nonalcoholic Fatty Liver Disease

NCEP National Cholesterol Education Program

NGT Naso-Gastric Tube

NOTES Natural Orifice Transluminal Endoscopic Surgery

NPY Neuropeptide Y
OA Osteoarthritis

OB Human Obesity Gene

OT Operative Time

PAI-1 Plasminogen Activator Inhibitor 1

POD Postoperative Day

POMC Proopiomelanocortin
PVN Paraventricular Nuclei

RYGB Roux-en-Y gastric Bypass

SADJB- Laparoscopic Single-Anastomosis Duodenal-

SG Jejunal Bypass with Sleeve Gastrectomy

SBP Systolic Blood Pressure

SEMS Self-expandable Metallic Stents

SFT Skin Fold Thickness
SG Sleeve Gastrectomy

SILS Single-Incision Laparoscopic Sleeve

Gastrectomy

SISG Single-Incision Sleeve Gastrectomy

SPSG Singl-Port Sleeve Gastrectomy

TAG Triglyceride

Total-C Total cholesterol

TSH Thyroid Stimulating Hormone

T2DM Type 2 Diabetes Mellitus

VBG Vertical Banded GastroplastyVLDL Very Low Density Lipoprotein

VMN Ventromedial NucleiWC Waist Circumference

WHO World Health Organization

WHR Waist to Hip Ratio

List of Figures

Fig. No	Title	Page
Figure (1.1):	Prevalence rates of obesity	5
Figure (1.2):	Classification of obesity according to Body Ma	ss Index15
Figure (1.3):	Measuring waist circumference	20
Figure (1.4):	Measuring subcutaneous skin fold thicknesses.	22
Figure (1.5):	Commercially available units for measure of bioelectrical impedance	
Figure (1.6):	CT images of the abdomen of a man with obesity	
Figure (1.7):	MRI whole body scans and fat maps of you women	-
Figure (3.1):	Gastric Bypass	54
Figure (3.2):	Intestinal jejunal Bypass	55
Figure (3.3):	Tow different methods of Gastroplasty	57
Figure (3.4):	Four rows of staples and the reminant of the (VBG)	
Figure (3.5):	Application of proline mesh on the end of the and its fixation by proline 2/0 from both sides (-
Figure (3.6):	The two commonly used forms of LAGB added fluid and with saline added	
Figure (3.7):	Magenstrasse and Mill Operation	62
Figure (3.8):	Fluoroscopic AP view of an ALGB procedure.	65
Figure (4.1):	French position (SG)	70
Figure (4.2):	Port setup (SG)	70

List of Figures (Cont.)

Fig. No	Title I	Page
Figure (4.3):	Transecting Stomach (SG)	72
Figure (4.4):	Placing the calibration probe into the stomach (SG)72	
Figure (4.5):	Transsection of the stomach with the linear states (SG)	-
Figure (4.6):	Gastric sleeve specimen	74
Figure (4.7):	Single port device (SISG)	75
Figure (4.8):	Single-incision port placement and surgeon positio (SISG)	•
Figure (4.9):	Instrument placement for division of omentum (SISG)77	
Figure (4.10):	Instrument placement for stapling of stomach (SISG)	
Figure (4.11):	Transumbilical access and 5-mm assistance trocar80	
Figure (4.12):	Postoperative view of laparoscopic SADJB-SG82	
Figure (4.13):	Gastrografin study performed after surgery showing "sleeve-like" appearance of stomach and loop anastomosis at duodenum (SADJB-SG)	
Figure (4.14):	Operative view with vaginal, flexible laparoscopic combined transvaginal and abdominal laparoscopic	
Figure (4.15):	Operative view, umbilical, straight laparoscope combined transvaginal and abdominal laparosc SG	copic
Figure (4.16):	Operative view, umbilical, straight laparoscope combined transvaginal and abdominal laparosc	

Figure (4.17):	Surgical sleeve gastrectomy compared to endoscopic sleeve gastroplasty
Figure (4.18):	Endoscopic suturing system used in Endoscopic Sleeve Gastroplasty stapler
Figure (4.19):	Suturing sequence for the creation of the endoscopic sleeve gastroplasty
Figure (4.20):	Gastric volume before and after endoscopic sleeve gastroplasty90
Figure (4.21):	Stomach before, immediately after, and at 3 months after endoscopic sleeve gastroplasty showing an intact sleeve
Figure (4.22):	Position of trocars during robotic sleeve gastrectomy92
Figure (4.23):	Shows the robot docked93
Figure (4.24):	Left subphrenic fluid collections with drainage. Esophageal Self-expandable stent covering the fistula and duodenal feeding tube
Figure (4.25):	Contrast-enhanced abdominopelvic multidetector—row computed tomography (MDCT) (a) showing the leak (arrow) with spilling into stranded peri-gastric fat, containing contrast material and air. The orifice of the leak is readily found on endoscopy, on the staple line (arrow) (b).
Figure (4.26):	Stenting of the leak was performed under both fluoroscopic (a) and endoscopic (b) control. The final result shows the endoprosthesis (arrow) placed as far as possible into the leak

List of Tables

Tab. No	Title Pa	age
Table (1.1):	Obesity classification by American Sociotor Bariatric surgery	•
Table (1.2):	Selection of current criteria used to define metabolic health status	
Table (1.3):	Proportion of disease prevaler attributable to obesity	
Table (1.4):	Classification of weight status a comorbid risk in adults based on	
Table (1.5):	Adjusted body mass index (ABMI)	18
Table (1.6):	Classification of overweight and obes by BMI, waist circumference, a associated disease risk	nd
Table (4.1):	showing outcomes between SISG a MPSG	

Introduction

Obesity is a serious health condition affecting 20 to 25% of children and adolescents (*Brien et al.*, 2010).

Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problem (*Haslam et al.*, 2005).

According to BMI, obesity is defined as 30 Kg/m^2 over desirable weight and morbid obesity is defined as BMI over 40 Kg/m^2 . More recently, another category, super obesity has been defined as BMI greater than 50 Kg/m^2 over desirable weight (*Bray*, 2003).

WHO estimates that a billion people worldwide are overweight (BMI greater than 25), and 300 million people are obese (BMI greater than 30) (*Lenz & Diamond*, 2008).

Obesity is a multi-factorial disease, it develops from integration of genetic (Rankinen et al 2006), environmental, social, behavioral, physiological, metabolic, neuro-endocrinal, and psychological factors, the exact etiology is unknown, it is associated with many health hazards, such as type 2 diabetes mellitus, cardiovascular diseases, hypertension, stroke, osteoarthritis, sleep apnea, and nonalcoholic fatty liver disease (*John*, 2006).

The current management for obesity consists of dietary therapy, pharmacologic therapy and surgical intervention. The current review, focusing on two drugs Sibutramine and Orlistat, offers a panoramic view of the various trials and studies conducted till date (*Maya*, 2008).

In recent years there has been renewed interest in the surgical treatment of morbid obesity in concomitance with the epidemic of obesity, and application of the laparoscopic techniques to the field of bariatric surgery as well. Bariatric surgery proved effective in providing weight loss of large magnitude, correction of comorbidities and excellent short-term and long-term outcomes (*Sugerman and Kral*, 2005).

Different surgical procedures are available for treatment of severely obese patients. These procedures create weight loss by two mechanisms of action: restriction and malabsorption (*Herron*, 2004).

The sleeve gastrectomy is a restrictive intervention consisting of a vertical gastrectomy including the entire greater curvature of the stomach while leaving in place an approximately 100-ml gastric tube along the lesser curvature. This intervention was initially proposed as the first part of a duodenal switch in patients whose body mass index was greater than 60 kg/m². Since then, these indications have developed and this intervention now enjoys certain favor on the part of bariatric surgery teams (*Mognol & Marmuse*, 2007).

The Laparoscopic Sleeve Gastrectomy (*LSG*) has increased in popularity and is currently very "trendy" among laparoscopic surgeons involved in bariatric surgery. As LSG proved to be effective in achieving considerable weight loss in the short-term, it has been proposed by some as a sole bariatric procedure (*Iannelli et al.*, 2008)

Aim of Work

The aim of this work is to through some lights on the new trends on sleeve gastrectomy for management of morbid obesity..

Definition and Etiology of Obesity

Overweight and obesity are the fifth leading risk for global deaths. At least 2.8 million adults die each year as a result of being overweight or obese. In addition, 44% of the diabetes burden, 23% of the ischemic heart disease burden and between 7% and 41% of certain cancer burdens are attributable to overweight and obesity (*Stevens et al.*, 2012).

The global pandemic of obesity with its associated co-morbidity has progress steadily and inexorably since the late 1970s and foreseeably the most serious and costly health issue for this century. The magnitude of rise has varied with region, country, and with gender; however, stabilization of the obesity prevalence is rare, and of great concern, the rise has accelerated globally over the last decade. The global age standardized prevalence of obesity [body mass index (BMI) \geq 30 kg/m2] nearly doubled from 6.4 % in 1980 to 12.0 % in 2008. Half of this rise occurred in the 20 years between 1980 and 2000 and half occurred in the 8 years between 2000 and 2008 (*Stevens et al.*, 2012).

The prevalence of obesity is increasing worldwide, with the condition predicted to affect more than one billion people by 2030 (*Kelly et al., 2008*).

> Definition of obesity

Being obese or overweight is defined on the basis of body mass index (BMI) as recommended by the World Health Organization (WHO). WHO defines those with a BMI between 25.0 and 29.9 kg/m2 as overweight and those with a BMI above 30.0 kg/m2 as obese (*Nguyen et al.*, 2010) (**Table 1.1**).

Table 1.1: obesity classification by American Society for Bariatric surgery. (Ayloo et al., 2011)

BMI value (kg/m ²)	Category
18.5-24.9	Normal
25.0-26.9	Overweight
27.0-29.9	Mild obesity
30.0-34.9	Moderate obesity- class I
35.0-39.9	Sever obesity- class II
40.0-49.9	Extreme (morbid) obesity – class III
50.0-59.9	Super obesity
60.0 +	Super – super obesity

BMI changes with age in children and therefore absolute cutoffs are not appropriate for them. Instead, childhood overweight and obesity are defined as BMI \geq 85th and 95th percentile respectively as per age and gender-specific BMI references (*Rome*, 2011).

Morbid obesity is defined as severe obesity that threatens one's health and can shorten life span. Obesity can be treated medically and surgically. Medical treatment for obesity is difficult, because the amount of weight lost is small and patients tend to regain most of the weight. Operations designed to result in significant and long-lasting weight loss in patients who are severely obese are called bariatric surgery, The term bariatric surgery is derived from the Greek words **baros** (weight) and **iatreia** (medical treatment). Body mass index (BMI) describes relative weight for height and correlates significantly with an individual's total body fat. BMI is based on height and weight and applies to adults of both sexes. BMI is calculated as follows: BMI equals weight in kg/height in m2 (*Ayloo et al.*, 2011).