Three-dimensional ultrasound in the assessment of adnexal masses

An Essay

Submitted for Partial fulfillment of the Master Degree in Radiodiagnosis

Presented by

Mohammad Saad Elbadry

M.B.B.Ch.

Supervisors

Prof.Dr. Hanan Mohamed Hanafy

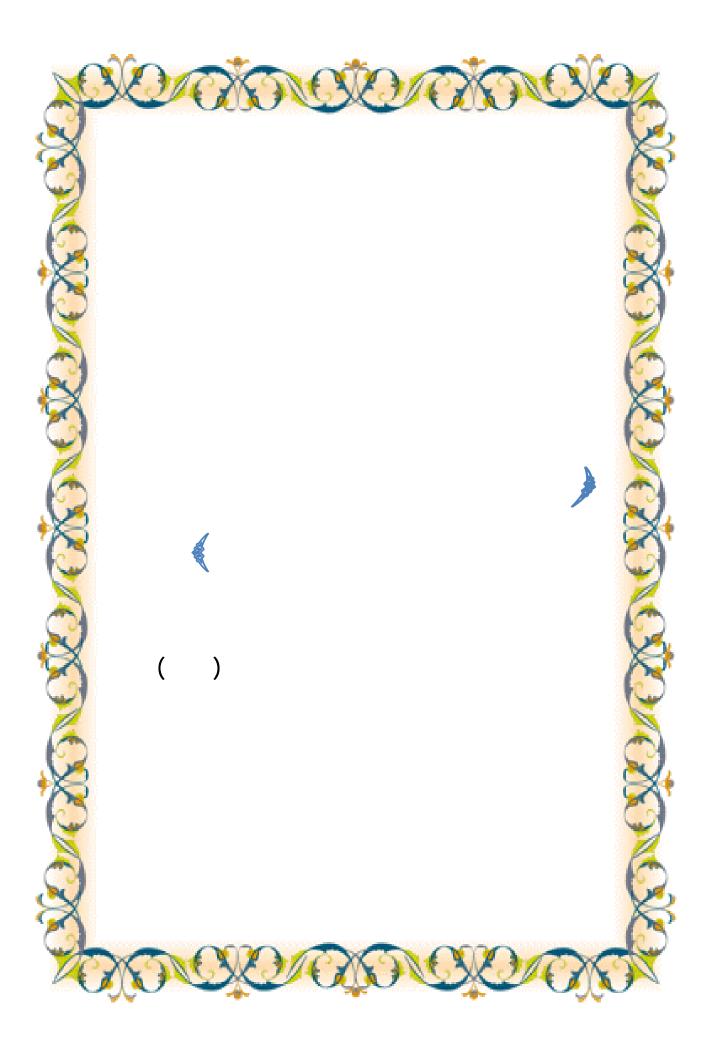
Professor of Radiodiagnosis

Faculty of Medicine

Ain Shams University

Prof.Dr. Maha Khaled Abdelghaffar

Assistant Professor of Radiodiagnosis


Faculty of Medicine

Ain Shams University

Faculty of Medicine

Ain Shams University

2010

Acknowledgements

First and foremost, thanks to Allah who gave me the ability to complete this work.

I wish to express my sincere and deepest gratitude and appreciation to *Prof .Dr. Hanan Mohamed Hanafy*, professor of radiodiagnosis, faculty of medicine, Ain Shams University, for her generous help, valuable comments and extreme kindness. Certainly her help was more than words could express.

I would like to express my gratitude to *Prof. Dr. Maha Khaled Abdelghaffar*, assistant professor of radiodiagnosis, faculty of medicine, Ain Shams University for her help.

I would like to thank all professors of radiodiagnosis at the military medical academy especially *Prof. Dr. Hany Hafez Lotfy* for his endless support and generous help.

Finally, my truthful gratitude to my mother, father, sister, brother and my dear wife for their valuable help, keen interest and support in the progress and accomplishment of this work.

Contents

List of figures	i
List of tables	iv
List of abbreviations	v
Introduction	1
Anatomy	4
Pathology of adnexal masses	20
Technical considerations	47
Role of 3D US in assessment of adnexal masses	69
Summary and conclusion	103
References	106
Arabic summary	118

List of Figures

Fig. No.	Page	Title
1 5	Sagittal section of the lower part of a female trunk, right	
	O	segment.
2	7	Anatomic regions of the uterus, coronal view.
		Lateral view of the uterus to show composition of the broad
3	8	ligament, the relations of ureter and uterine artery, and the
		peritoneal covering of the uterus.
4	10	The pelvic ligaments seen from above.
5	12	Anatomy of the fallopian tube and ovary, posterior view.
6	15	Major components of the bony pelvis shown in a frontal
		superior view of the female pelvis.
7	24	Various locations of myomas.
8	26	Transverse vaginal septum (class I vaginal septum
		anomaly).
9	31	Diagram shows the location of endometriomas and
		implants of endometriosis.
10	35	Diagram shows origins of the three main types of primary
		ovarian neoplasms.
11	40	Different sites of ectopic pregnancy.
12	45	Pelvic kidney.
13	48	Ultrasound probes capable of 3D and 4D scanning: linear,
		convex, and transvaginal probes.
14	52-	Schematic diagrams showing scanning approaches. (A)
	53	Free-hand scanning. (B) Mechanical scanning with a fan

		type motor-driven mechanical transducer. (C) Electronic
		scanning with a two-dimensional matrix array transducer.
15		Schematic diagrams showing the four mechanical scanning
	54	approaches. (a) Linear scanning approach, (b) Tilt scanning
	34	approach, (c) Tilt scanning approach, (d) Rotational
		scanning approach.
		Virtual organ computer-aided analysis. This figure shows a
		multiplanar display of an adnexal mass. Longitudinal and
1.0	60	transverse views are shown in the upper left and right
16	60	image; the coronal plane is shown in the lower left image.
		The resultant three-dimensional model can be seen in the
		lower right image.
17	(1	3DPD images of an adnexal mass. Peripheral vessel
17	61	distribution (A) and central vessel distribution (B).
10	71	Simple ovarian cyst. Transvaginal 3D image with color flow
18		of a simple ovarian cyst.
19	72	3D image of corpus luteum.
		Haemorrhagic ovarian cyst. (A) Transvaginal grayscale
	73	image of the right ovary demonstrates a typical "fishnet"
20		appearance. (B) Grayscale and color flow Doppler image of
		the right ovarian cyst with a retracting blood clot adherent
		to the cyst wall and absent vascularity.
21	74	Polycystic ovarian disease.
22	75	3D U/S of PCO, multiple small peripheral follicles with
22		increased stromal echogenicity.
22	76	Grayscale image of the pelvis with bilateral endometriomas
23		demonstrates the "kissing ovaries" sign.
24	77	3D U/S of endometrioma.

		3D U/S of a unilocular ovarian cyst with echogenic content
25 78	78	and hyperechoic solid area with thick wall and regular
		outline characteristic of Teratoma.
26	79	3D U/S of an ovarian dermoid.
27	79	3D ultrasound of ovarian teratoma.
		Surgically confirmed serous cystadenoma. Transvaginal
28	80	grayscale and corresponding three-dimensional US image
20	00	demonstrate a complex cystic mass with a mural nodule
		that shows vascularity on the three dimensional image.
		Serous cystadenocarcinoma in a 67 year old woman. (A)
29	81	Two dimensional and (B) three-dimensional
		ultrasonography showed mostly solid tumor.
30	82	Endometrioid cancer in a 40 year old woman. (A) Two
		dimensional and (B) three-dimensional (3D)
		ultrasonography showed papillary projection (arrows).
31	83	Malignant adnexal masses.
32	87	3D Doppler characteristics in ovarian carcinoma.
33	89	Hydrosalpinx. Transvaginal grayscale (A) and color flow
33	0)	Doppler (B).
34	89	3D U/S of hydrosalpinx.
35	90	3D U/S of hydrosalpinx.
36	91	3D image of tuboovarian abscess
	91	Pelvic inflammatory disease. (A) Transvaginal grayscale
37		image demonstrates debris within the dilated fallopian
		tube. (B) Transabdominal grayscale image in patient with
		fever and confirmed PID reveals pelvic abscess (arrows).
38	92	Transvaginal sonography 3-dimensional CDS of tubo-
38		ovarian abscess showing central vessels in frontal (A) and

		reformatted multiplanar coronal view (B). Note the central	
		distribution of vessels, particularly within the walls of the	
		abscess.	
39	93	3D U/S of tubal ectopic pregnancy; "ring sign".	
40	94	3D U/S of a large subserous fibroid.	
41	95	Subserosal leiomyoma with vascular bridging sign by color	
41	93	Doppler.	
42	97	3D U/S ovarian volume calculation (VOCAL).	
		3DPD of a complex adnexal mass, with solid components	
43	98	arising from wall internal surface. 3DPD reveals a complex	
		vascular architecture with chaotic vessel arrangement.	
		Histologic evaluation demonstrated a primary ovarian	
		carcinoma.	

List of Tables

Table no.	Page	Title
1	20-21	Differential diagnosis of pelvic masses; site-
		specific aetiology.
2	21-22	Differential diagnosis of pelvic masses; age -
		specific aetiology.
3	84	Differentiation of small adnexal masses based
		on morphologic characteristics of
		transvaginal sonographic imaging: a
		multicentre study.
4	99-100	Three-dimensional ultrasonography and
		power Doppler criteria for diagnosis of

ovarian malignancy.

List of Abbreviations

Abbreviation	Stands for
2D	Two-Dimensional
2D US	Two dimensional ultrasonography
3D US	Three dimensional ultrasonography
3D	Three dimensional
3DPD	Three dimensional power Doppler
4D	Four dimensional
AFP	Alfa fetoprotein
CA125	Cancer antigen 125
CDI	Color Doppler imaging
CDS	Color Doppler sonography
CL	Corpus luteum
Cm	Centimeter
Cm3	Cubic centimeter
СТ	Computed tomography
EP	Ectopic pregnancy
g	grams
НС	Haemorrhagic cyst
hCG	Human chorionic gonadotropin
PCO	Polycystic ovarian disease
PDI	Power Doppler imaging
PID	Pelvic inflammatory disease

ROI	Region of interest	
STIC	Spatiotemporal image correlation	
TGC	Time gain compensation	
TRUS	Transrectal ultrasonography	
TUI	Tomographic ultrasound imaging	
TVCD	Transvaginal color Doppler	
TVUS	Transvaginal ultrasound	
US	Ultrasound	
VBS	Vascular bridging sign	
VCI	Volume contrast imaging .	
VOCAL	Virtual organ computer aided analysis	
	Volume calculation	

Introduction and aim of the work

Introduction

A pelvic mass might be found in a woman presenting with various gynecological complaints, in which case it might or might not be related to her symptoms. It might also be an incidental finding in a woman with no gynecological problems. Whatever the case, a pelvic mass usually raises anxiety, because it may be a malignancy. Therefore, imaging methods particularly ultrasound are often used to help make a correct diagnosis, so that appropriate treatment can be chosen. (*L. Valentin*, 2006)

The preoperative assessment of an adnexal mass is still a diagnostic challenge. Accurate preoperative assessment for presence of malignancy facilitates an optimal choice for surgery. Optimal surgical staging and cytoreductive surgery are of utmost importance in case of malignancy. At present, several parameters are available to distinguish benign and malignant masses. Age, menopausal state, CA-125 level, two-dimensional (2D) gray scale and power Doppler parameters are all known to contribute to preoperative diagnosis. These parameters have been combined in diagnostic models. Although initial publication reported an almost perfect performance of these models, external validation showed their diagnostic performance to be less optimal. (*Peggy et al.*, 2007)

The accuracy of 2D ultrasound proved by some authors is not sufficient to avert surgery, morphological analysis of adnexal masses with ultrasound helps narrow the differential diagnosis, determining the degree of suspicion for malignancy. Selective use of 3D ultrasound and power Doppler angiography could be used to better characterize adnexal tumors. Detailed 3D sonography may help to identify women who, if needed, may have less invasive surgical procedure such as laparoscopy or be referred to a gynecological oncologist. (*Laban et al.*, 2007)

Three-dimensional power Doppler sonography (3DPD) is helpful in depicting overall vessel density and branching patterns within an intratumoral abnormality, as the presence of central intratumoral vascularity increases the suspension of malignancy. This technique seems to be useful in distinguishing benign from malignant ovarian masses. Combined morphological and vascular imaging obtained by 3D ultrasound with 3D power Doppler appears to further improve the preoperative assessment of adnexal masses. (*Fleisher et al.*, 2005)

Aim of the work

This essay is designed to assess the role of three-dimensional ultrasound in the evaluation of adnexal masses.