A study of the effect of leptin on prostate cells: emphasis on estrogen metabolism

Thesis presented by Christine Nathan Habib Demian

Bachelor Degree in Pharmaceutical Sciences (2010) Demonstrator of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Submitted for partial fulfillment of Master's degree in Pharmaceutical Sciences to Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Under the supervision of Prof. Ashraf Bahi El-Din Abdel-Naim

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Prof. Amani Emam Khalifa

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. Seconded to "The Holding Company for Biological Products & Vaccines" as the Consultant to the Chairman for Strategic Planning.

Dr. Ahmed Mohamed Mahmoud Al-Abd

Lecturer of Pharmacology and Toxicology, Medical Division, National Research Center.

Faculty of Pharmacy Ain Shams University (2014)

Pre-requisite Post-Graduate Courses

Besides the work presented in this thesis, the candidate has attended the following courses:

General courses:

- 1. Instrumental analysis.
- 2. Physical chemistry.
- 3. Computer skills.
- 4. Statistics.

Special courses:

- 1. Pharmacology.
- 2. Clinical pharmacology and therapeutics.
- 3. Neuropharmacology.
- 4. Molecular pharmacology.
- 5. Selected topics in pharmacology and toxicology.

She has successfully passed examination in these courses with general grade *Excellent*.

Head of Pharmacology and Toxicology Department Prof. Ebtehal El Demerdash Zaki

<u>Acknowledgements</u>

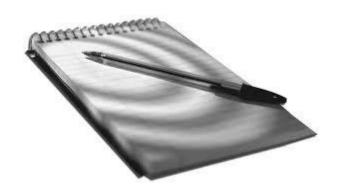
No words can be ever said expressing my deep thanks to **GOD** for helping, supporting, encouraging and blessing me with generous professors while carrying out my research.

I would like to express my great appreciation and thanks to **Prof. Ashraf Bahi El-Din Abdel-Naim**, Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, who has made this work possible by his great effort, support and indispensable help in practical work and thesis writing. I would like also to thank him for establishing a tissue culture laboratory in our department.

I am greatly thankful to **Prof. Amani Khalifa**, Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her help in thesis writing as well as her guidance and support throughout the supervision of my thesis.

I am also very grateful to **Dr. Ahmed Mohamed Mahmoud Al-Abd**, Lecturer of Pharmacology and Toxicology, Medical Division,
National Research Center, for his help and guidance in practical work.

I would like to express my appreciation and gratitude to **Prof. Alaa Khedr,** Professor of Analytical Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia, and **Prof. Hisham Ahmed Mosli,** Professor of Urology, Department of Urology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, for their great effort in accomplishing the part of liquid chromatography-tandem mass spectrometry (LC-MS) method.


I would like to thank **Dr. Abeer Shaalan**, Department of Oral Pathology, Faculty of Oral and Dental Medicine, Cairo University for her effort in accomplishing the part of immunocytochemical staining technique.

It is my great pleasure to thank all members of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University for their continuous support and help.

Finally, but of great importance, I wish to express my deep gratefulness and thanks to my family for their support and continuous prayers and for all what they endured to tolerate and uphold me in finishing this thesis.

Christine Nathan Habib

Abstract

Obesity is recognized as an important risk factor for prostate cancer. Many obese individuals have leptin resistance associated with increased circulating plasma leptin. Previous in-vitro studies showed that leptin stimulated proliferation of human prostate cancer cells (DU145 and PC-3). Furthermore, estrogen and its metabolites increasingly implicated in prostate cancer progression. Therefore, the present study was designed to investigate the effect of leptin on estrogen metabolism and whether it will shift estrogen metabolism to generate proliferative metabolites and/or decrease the formation of anti-proliferative metabolites in prostate cells. Malignant (PC-3) and benign (BPH-1) human prostate cells were treated with 17-β-hydroxy estradiol (1uM) alone or in combination with human recombinant leptin (0.4, 4, 40 ng/ml) for 72 h. Cell proliferation was determined by sulphorhodamine B assay and demonstrated that leptin caused significant growth potentiation in both cell lines. Immunocytochemical staining showed that leptin significantly increased the expression of estrogen receptor (ER) α decreased that of ER-\beta in PC-3 cell line. Liquid chromatography-tandem mass spectrometry (LC-MS) revealed that leptin increased the concentration of the proliferative estrogen metabolite 4-hydroxyestrone and/or decreased that of the antiproliferative metabolites (2-methoxyestradiol, 4-methoxyestradiol

and 2-methoxyestrone) in both cell lines. Interestingly, quantitative RT- PCR showed that leptin significantly upregulated aromatase and CYP1B1 expression, however downregulated that of COMT. Thus, these data indicate that leptin can influence prostate cell proliferation in relation to estrogen metabolism.

Keywords: Obesity; Leptin; Prostate; Estrogen metabolism.

List of Abbreviations

AdipoR	Adiponectin receptor.
ADT	Androgen deprivation therapy.
Akt	Protein kinase B.
AMPK	5'adenosine monophosphate-activated protein kinase.
ANOVA	Analysis of variance.
AR	Androgen receptor.
ArKO	Aromatase knockout.
β-ERKO	Estrogen receptor-β knockout.
Bcl-2	B-cell lymphoma 2.
bFGF	Basic fibroblast growth factor.
BMI	Body mass index.
ВРН	Benign prostatic hyperplasia.
cDNA	Complementary deoxyribonucleic acid.
COMT	Catechol-o-methyltransferase.
CYP1A1	Cytochrome P450 1A1.
CYP1B1	Cytochrome P450 1B1.
DAB	Diaminobenzidine.
dATP	Deoxyadenosine triphosphate.

dCTP	Deoxycytidine triphosphate.
dGTP	Deoxyguanosine triphosphate.
DHT	Dihydrotestosterone.
DMSO	Dimethyl sulfoxide.
DNA	Deoxyribonucleic acid.
Dns-Cl	Dansyl chloride.
dNTPs	Deoxy nucleoside triphosphates.
dTTP	Deoxythymidine triphosphate.
E2	17-β-Hydroxyestradiol.
EDTA	Ethylene diamine tetracetic acid disodium salt.
ELISA	Enzyme-linked immunosorbent assay.
ER-α	Estrogen receptor alpha.
ER-β	Estrogen receptor beta.
FBS	Fetal bovine serum.
FGF	Fibroblast growth factor.
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase.
GRB-2	Growth factor receptor bound protein-2.
HCl	Hydrochloric acid.
HPLC	High-performance liquid chromatography.
HRP	Horseradish peroxidase.
ICC	Immunocytochemical staining.

IGF-1	Insulin-like growth factor-1.
IL	Interleukin.
IRS1	Insulin receptor substrate 1.
JAK	Janus kinases.
kDa	Kilodalton.
K ₂ HPO ₄	Dipotassium hydrogen phosphate.
LC-MS	Liquid chromatography-tandem mass spectrometry.
LEP	Leptin gene.
MAPK	Mitogen-activated protein kinases.
$MgCl_2$	Magnesium chloride.
MMPs	Matrix metalloproteinases.
MRM	Mixture reaction monitoring mode.
mRNA	Messenger ribonucleic acid.
ms	Millisecond(s).
MS/MS	Tandem mass spectrometry.
m/z	Mass/charge
NaCl	Sodium chloride.
NAD	Nicotinamide adenine dinucleotide.
Na ₂ HPO ₄	Disodium hydrogen phosphate.
Nampt	Nicotinamide phosphoribosyltransferase.

NF-ĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells.
ng	Nanogram(s).
NIH	National Institutes of Health.
nm	Nanometer(s).
Ob	Obese gene.
ObR	Leptin receptor.
PAI-1	Plasminogen activator inhibitor-1.
PBEF	Pre-B cell colony enhancing factor.
PBS	Phosphate buffered saline.
PCa	Prostate cancer.
pg	Picogram(s).
PI3K	Phosphatidyl inositol 3-kinase.
RNA	Ribonucleic acid.
ROS	Reactive oxygen species.
RT-PCR	Reverse transcriptase- polymerase chain reaction.
SEM	Standard error of mean.
SHBG	Sex hormone-binding globulin.
SNP	Single nucleotide polymorphism.
SOCS3	Suppressor of cytokine signaling 3.
SRB	Sulforhodamine B dye.

STAT3	Signal transducer and activator of transcription 3.
TBE	Tris borate EDTA buffer.
TBS	Tris buffer saline.
TCA	Trichloroacetic acid.
TGF-β1	Transforming growth factor-β1.
TNF-α	Tumor necrosis factor-α
ug	Microgram(s).
ul	Microlitre(s).
uM	Micromolar(s).
uPA	Urokinase plasminogen activator.
UV	Ultraviolet.
v	Volt(s).
VEGF	Vascular endothelial growth factor.
WAT	White adipose tissue.
WHO	World health organization.
w/v	Weight/volume.

List of Figures

Figure No.	Figure title	Page
INU.	O	No.
1.1	Fundamental principles of energy balance.	3
1.2	Potential pathways directly linking obesity with cancer.	11
1.3	Schematic representation of leptin receptor (ObR) isoforms.	21
1.4	The long form of leptin receptor possesses three tyrosine residues in its cytoplasmatic domain.	23
1.5	Estrogen receptor- α (ER- α) mediates the adverse actions of estrogen in the prostate.	33
1.6	Estrogen receptor- β (ER- β) mediates the beneficial actions of estrogen in the prostate.	35
1.7	Biotransformation scheme for estrogen metabolism.	38
2.1	Flow chart illustration of the steps for isolating total RNA using RNeasy® Mini Kit Total RNA Purification System.	67
3.1	Effect of leptin on PC-3 cell proliferation.	75
3.2	Effect of leptin on BPH-1 cell proliferation.	76

Figure No.	Figure title	Page No.
3.3	Effect of leptin on the expression level of ER- α in PC-3 cells.	79
3.4	Effect of leptin on the expression level of ER- β in PC-3 cells.	81
3.5	Effect of leptin on the concentration of estrogen and different estrogen metabolites in PC-3 cell line.	87
3.6	Effect of leptin on the concentration of estrogen and different estrogen metabolites in BPH-1 cell line.	88
3.7	Effect of leptin on mRNA expression of some estrogen metabolizing enzymes (aromatase, catechol-o-methyltransferase, and cytochrome P 450 1B1) in PC-3 cell line.	92
3.8	Effect of leptin on mRNA expression of some estrogen metabolizing enzymes (aromatase, catechol-o-methyltransferase, and cytochrome P 450 1B1) in BPH-1cell line.	93

List of Tables

Table No.	Table title	Page No.
2.1	Primers sequence for aromatase, catechol-omethyltransferase (COMT), cytochrome P 450 1B1 (CYP1B1) and GAPDH genes.	69
3.1	Effect of leptin on PC-3 and BPH-1 cell proliferation using SRB assay.	74
3.2	Effect of leptin on the number of cells expressing ER- α and ER- β in PC-3 cells.	78
3.3	Effect of leptin on the concentration of estrogen and different estrogen metabolites in PC-3 cell line.	85
3.4	Effect of leptin on the concentration of estrogen and different estrogen metabolites in BPH-1cell line.	86
3.5	Effect of leptin on the expression of aromatase, catechol-o-methyltransferase (COMT) and cytochrome P 450 1B1 (CYP1B1) in PC-3 cells.	90
3.6	Effect of leptin on the expression of aromatase, catechol-o-methyltransferase (COMT) and cytochrome P 450 1B1 (CYP1B1) in BPH-1 cells.	91