

Ain Shams University Faculty of Education Physics Department

''Study of High Energy Hadron- Nucleus Interactions''

Thesis

Submitted for the Degree of Master of Teacher's Preparation in Science (Physics).

By

Ehab Gamal Abbas Mitwaly

B.Sc. and Education, Gen. Diploma (Physics) and Spec. Diploma (Physics).

To

Physics Department Faculty of Education Ain Shams University

2010

Approval Sheet

"Study of High Energy Hadron-Nucleus Interactions"

Candidate: Ehab Gamal Abbas Mitwaly.

Degree of Master of Teacher's Preparation in Science (Physics).

Board of Advisors

Approved by Signature

1. Prof. Dr/M. A. Kamel.

Physics Department, Faculty of Education, Ain Shams University.

2. Dr/ M. T. Mohamed.

Physics Department, Faculty of Education, Ain Shams University.

3. Dr/ M. I. El-Mashad.

Physics Department, Faculty of Education, Ain Shams University.

Date of presentation / /2010

Post graduate studies:

Stamp: / / 2010 Date of approval: / /2010

Approval of Faculty Council: / / 2010

Approval of University Council: / / 2010

Acknowledgement	vi
List of Tables.	vii
List of Figures	viii
Abbreviations	xvii
Abstract	xviii
Summary	xix
Introduction	1
Chapter 1: Basic Characteristics of High Energy Hadron-nucleus Interactions.	
1.1. Introduction.	5
1.2. Notations in Hadron-Nucleus (h-A) Experiments.	6
1.3. Review of Experimental Data for (h-A) Interactions.	7
1.3.1. Hadron-Nucleus Cross Section.	7
1.3.2. General Properties of High Energy (h-A) Interactions Multiplicities.	8
1.3.3. Average Number of Collision.	26
1.3.4. The Positive Excess Particles (Fast Protons).	27
1.4. Rapidity Distribution of Secondary Particles.	29
1.5. Angular Distribution of Secondary Particles.	30
1.6. Inelasticity in Hadron-Nucleus Interaction.	33

Chapter 2: Models of High Energy Hadron-Nucleus Interactions.	
2.1. Introduction.	36
2.2. Intranuclear Cascade Model (INCM).	38
2.3. Diffractive Excitation Model (DEM).	41
2.4. Hydrodynamical Model.	42
2.5. Two-Fireball Model (TFM).	45
2.6. Multiple Scattering Model (MSM).	48
2.7. Collective Tube Model (CTM).	50
2.8. Energy Flux Cascade Model (EFCM).	53
2.9. Quark Models.	55
Chapter 3: High Energy Hadron- Nucleus Interactions i the Frame work of the Parton Two Fireball Model.	n
3.1. Introduction.	59
3.2. Hadron and Target Nucleus Properties.	59
3.2.1. Hadron Properties.	60
3.2.2. Target Nucleus Properties.	60
3.3. The Interaction Mechanism.	61
3.4. The Variation of Overlapping Volume with The Impact-parameter.	62
3.5. Collision Kinematics.	

3.6. Types of Collisions.	68
3.6.1. The Peripheral Collisions.	68
3.6.2. The Central Collisions.	70
3.7. Multi-Collision Process.	70
3.8. Multi-particle Production in Hadron-Nucleus Interactions.	72
3.9. The Mean Energy Consumed in the Creation of Each Pion.	76
3.10. The Charged Particle Multiplicity.	78
3.11. The Shower Particles Multiplicity.	81
3.12. Negative Particles Multiplicity.	88
3.14. The Effect of Fast Proton on the Produced Particles Multiplicity.	96
3.15. Shower Particle Multiplicity Refinement.	
3.16. Average Inelasticity of Hadron-Nucleus Interactions.	
Chapter 4: Rapidity Distribution of Secondary Particles	•
5.1. Introduction.	108
5.2. Rapidity Distribution of Secondaries.	108
5.3. Rapidity distribution of Pions in The Fireball Rest Frame.	
5.4. The Fireball Rapidity in CMS.	111
5.5. The Pions Rapidity Distribution in CMS.	113
Conclusions.	120
References.	123
Arabic summary	

Acknowledgement

Before all and above all, many thanks to Allah, the lord of all being.

The author indebted with his utmost thanks to Prof. Dr/ M. A. Kamel the head of the theoretical Physics group for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

Deepest gratitude to Dr/ *M. T. Mohamed* for his advice, valuable help and encouragement during this study and fruitful advice throughout this work.

The author wishes to express my deep thanks and sincere gratitude and ask Allah for great merciful for the soul of Dr / *M. I. El-Mashad* for his kind supervision, guidance help, encouragement and valuable advice. His sustainable support is gratefully acknowledged.

The author wishes to express his sincere gratitude to *Prof. Dr / Madiha Fadel abd Elaal*, Head of Physics Department, Faculty of Education, Ain Shams University for rendering facilities.

Deepest gratitude to Prof. Dr/ *M. Y. El-Bakery* for his valuable help and encouragement and fruitful advice throughout this work.

More thanks to my dear colleagues **Dr/S. Gamil & Dr/M. abdelHamid and Mr/S. abdelHady** for their co-operations and useful discussions

Finally, the assistance of the staff members and colleagues of theoretical physics group are highly appreciated.

List of Tables

List of Tables

	Page
Table (1.1): Average negative particles multiplicity $\langle n_s \rangle$ for	10
antiproton interactions with different nuclei at $40 \text{ and } 200 \text{ Gev/c}^{(12,13)}$	
Table (1.2): Average multiplicity of neutral pions for various interaction (32,43-46).	28
Table (1.3): Average negative charge $\langle n_{-} \rangle$, positive charge $\langle n_{+} \rangle$ and charge difference per event $\langle n_{+} - n_{-} \rangle$ for different hadron-nucleus interactions (15).	28
Table (3.1): Values of constants C_k Eq.(3.22) for different types of interactions.	74

Abbreviations

Abbreviations

h-h	hadron-hadron.
h-A	hadron-nucleus.
h-N	hadron-nucleon.
pp	proton-proton.
p-N	proton-nucleon.
p-A	proton-nucleus.
<i>p</i> −A	antiproton- nucleus.
KNO scaling	Koba-Nielsen-Olesen scaling.
CMS	Center of Mass System.
CERN	Center Europe Researches of Nuclei
ISR	Intersection Storge Ring.
QCD	Quantum Chromodynamics.
PTFM	Parton Two Fireball Model.
INCM	Intranuclear Cascade Model.
DEM	Diffractive Excitation Model .
TFM	Two-Fireball Model.
MSM	Multiple Scattering Model.
CTM	Collective Tube Model.
EFCM	Energy Flux Cascade Model
ΔOM_S	Additive Quark Models

List of Figures

lig.(1.1): The ratio R_{p-Em} versus E incoming hadron energy (3,10).	10
Fig.(1.2): The ratio R versus $\langle v \rangle$ the average number of	14
collisions ⁽²²⁾ .	
Fig.(1.3): The ratio R versus $A^{1/3}$ (22).	14
Fig.(1.4): Charged particle multiplicity distribution for p-Xe and p-Ar at $200 \text{ Gev/c}^{(12)}$.	17
Fig.(1.5): Negative particles multiplicity distribution for p-Xe and p-Ar at $200 \text{ Gev/c}^{(12)}$.	17
Fig.(1.6): Charged particle multiplicity distribution for $\overline{p} - Xe$ and $\overline{p} - Ar$ at 200 Gev/c ⁽¹²⁾ .	18
Fig.(1.7): Negative particle multiplicity distribution for $\overline{p} - Xe$ and $\overline{p} - Ar$ at 200 Gev/c ⁽¹²⁾ .	18
Fig.(1.8): Charged particles multiplicity distribution for p-Au at 200 Gev/c (25).	19
Fig.(1.9): Negative particles multiplicity distribution for p-Au at $200 \text{ Gev/c}^{(25)}$.	19
Fig.(1.10): Dispersion D __ as a function of the average negative particles $<$ n __ > for $p-A$ (full squares) and $\bar{p}-A$ (open squares) $^{(12)}$.	23

List of figures

Fig.(1.11): $\frac{D}{\langle n_{ch} \rangle}$ as a function of the number of identified protons $n_p^{(12)}$.	23
Fig. (1.12): The energy dependence of C_2 , C_3 and C_4 moments ⁽³⁰⁾ .	24
Fig.(1.13): The mean gray particle multiplicity $\langle n_g \rangle$ versus P_{in} in p-Em collisions (40,41).	24
Fig.(1.14): Rapidity distribution of charged particles produced in inelastic $p-Ar^{40}$ interaction at 200 Gev/c ⁽¹²⁾ .	31
Fig.(1.15): Rapidity distribution of negative particles produced in inelastic $p-Ar^{40}$ interaction at 200 Gev/c ⁽¹²⁾ .	31
Fig.(1.16): Rapidity distribution of charged particles produced in inelastic $p - Xe^{131}$ interaction at 200 Gev/c ⁽¹²⁾ .	32
Fig.(1.17): Rapidity distribution of negative particles produced in inelastic $p - Xe^{131}$ interaction at 200 Gev/c ⁽¹²⁾ .	32
Fig.(1.18): The experimental data of $\langle K \rangle_{p-Air}$ versus $\sqrt{S}^{(66)}$.	35
Fig.(2.1) : The dependence of R_{p-Em} on P_{Lab} and the predictions of some models.	40
Fig. (3.1): Peripheral, central collision and spherical cap volume.	64
Fig.(3.2) : Variation of the overlapping fraction (Z) with the dimensionless impact-parameter (x) for proton-Argon.	64

_	The Variation of average number of collision with mass number.	74
	Multiplicity distribution of shower particles for $p-Ar^{40}$ collision calculated according to PTFM as parameterized by Poisson and binomial distribution in comparison with the corresponding experimental data at 200 GeV/c.	81
	Multiplicity distribution of shower particles for $p-Ar^{40}$ collision calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	84
	Multiplicity distribution of shower particles for $p-Xe^{131}$ collision calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	84
	Multiplicity distribution of shower particles for $p-Au^{197}$ collision calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	85
	Multiplicity distribution of shower particles for $\bar{p}-Ar^{40}$ collisions calculated according to PTFM as parameterized by Poisson distribution in	

List of figures

Fig.(3.9):	comparison with the corresponding experimental data at 200 GeV/c. Multiplicity distribution of shower particles for $\bar{p}-Xe^{131}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c	85
Fig.(3.10)	• Variation of average number of shower particles $\langle n_s \rangle$ for $p - C^{12}$ versus P_{Lab} predicted by the PTFM.	86
Fig.(3.11)	• Variation of average number of shower particles $\langle n_s \rangle$ for $p - Cu^{64}$ versus P_{Lab} predicted by the PTFM.	87
Fig.(3.12)	Variation of average number of shower particles $\langle n_s \rangle$ for $p - Pb^{208}$ versus P_{Lab} predicted by the PTFM.	87
Fig.(3.13)	Multiplicity distribution of negative particles for $p-Ar^{40}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c .	91
Fig.(3.14)	Multiplicity distribution of negative particles for $p-Xe^{131}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison	

	with the corresponding experimental data at 200 GeV/c.	92
Fig.(3.15):	Multiplicity distribution of negative particles for $p-Au^{197}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	92
Fig.(3.16):	Multiplicity distribution of negative particles for $\bar{p}-Ar^{40}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	93
Fig.(3.17):	Multiplicity distribution of negative particles for $\bar{p}-Xe^{131}$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	93
Fig.(3.18):	Multiplicity distribution of negative particles for $p-He^4$ collisions calculated according to PTFM as parameterized by Poisson distribution in comparison with the corresponding experimental data at 200 GeV/c.	94

List of figures

	Variation of average number of negative particles $\langle n \rangle$ for $p-A$ versus mass number predicted by	
	PTFM at 200 GeV/c.	94
Fig.(3.20):	Variation of $p-A$ average negative particle with mass number at $P_{lab} = 100$, 200 and 360 GeV/c.	95
Fig.(3.21):	Dispersion for $p-A$ versus mass number.	95
Fig.(3.22):	Variation $\langle n_{\pi} \rangle$ as defined by Brick et al., ⁽²⁵⁾ for $p-A$ versus mass number (A) predicted by PTFM at 200 GeV/c	97
Fig.(3.23):	Variation of average number of shower particles $< n_s >$ for $p - C^{12}$ versus P_{Lab} . The dash line represents the PTFM prediction and the solid line represent PTFM prediction after adding fast protons.	102