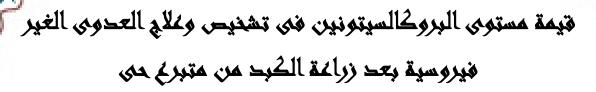
Value of Serum Procalcitonin In Diagnosis and Management of Non-Viral Infection Post Living Donor Liver Transplantation

Thesis

Submitted for partial fulfillment of the M.D degree in Tropical Medicine

By Hatem Khalil Anwar *M.B.,B.Ch., M.Sc.*


Supervised by Soheir Zakaria Mohamed Eissa, M.D.

Professor of Tropical Medicine, Cairo University

Ayman Yosry Abdel Rahem, M.D. Professor of Tropical Medicine, Cairo University

Saneya Mohamed Kamel, M.D Professor of Clinical Pathology, Cairo University

Faculty of Medicine Cairo University 2009

توطئة للحصول على درجة الدكتوراه في الامراض المتوطنة

مقدمه ماجستير الامراض المتوطنة كلية الطب جامعة القاهرة

تحت اشراف

ا.د. سمير زكريا محمد عيسى استاذ الأمراض المتوطنة - كلية الطب - جامعة القاهرة

ا. ح. أيمن يسرى عبد الرحيم استاذ الأمراض المتوطنة - كلية الطب - جامعة القاهرة

ا.د. سنية محمد كامل المحدد التحاليل الاكلينيكية- كلية الطب- جامعة القاهرة

كلية الطب جامعة القاهرة ٢٠٠٩ Introduction: Infection is the most common life-threatening complication observed after organ transplantation and a primary goal in liver transplantation programme is the prevention, early detection, and effective treatment of infection. The aim of the present study is to evaluate the role of serum procalcitonin(PCT) as an innovative infection parameter in diagnosis and management of non-viral infection post living donor liver transplantation. Patients and methods: The study enrolled 50 adult recipients of right lobe living donor liver transplantation who were followed up post operatively during their hospital stay for 30 ± 14 days (range 13 -74). Clinical, laboratory, bacteriological, and histopathological data were analyzed. CRP, PCT, LDH, and WBCs were compared in patients with and without infection. Serum PCT was measured at 1st and 3rd postoperative days to determine its normal pattern after surgical trauma, and at first clinical, laboratory or imaging suspicion of infection (which was confirmed by positive cultures), then after 12 hours, then after 48 hours of antimicrobial treatment to correlate its level to the clinical response. Results: The cohort consisted of 47 males and 3 females with a mean age of 49.1±8 years (range 19-64). Patients were categorized according to bacteriological and histopathological data into infection group (n=25) and rejection group (n=25). Among the 25 patients with proven infection only 3(12%) patients had normal PCT level, 6 (24%) had PCT level (0.5 – 2 ng/ml), 11 (44%) had PCT level (2 -10 ng/ml), and 5 (20%) patients their PCT levels were very high (> 10 ng/ml). On the other hand all the 25 patients with rejection had a PCT level < 2 ng/ml. At cut off value of 2 ng/ml PCT had a sensitivity of 64% and specificity of 100% for diagnosis of systemic infection (P = .0001). Laboratory data in infection and rejection groups revealed that the mean total leukocytic count was not statistically different between the two groups, however immature (band) form showed a significant difference between them, also mean CRP value was (36.96 \pm 29.17) in infection and (14.16 ± 7.32) in rejection (P< .01) and 18 was the best cut off value of CRP to diagnose infection with sensitivity 72% and specificity 68%. (P=.000). As regards PCT levels done after 48 hours of antimicrobial treatment, data revealed a significant relation to clinical improvement which was not demonstrated with follow up CRP. Conclusion: Both PCT & CRP have the ability for diagnose infection but PCT had higher specificity (100% vs 68%) and only PCT had a prognostic ability with early evaluation of treatment response.

Acknowledgment

First of all I would like to thank GOD for giving me the power to complete this work, may he be generous on me and give me the knowledge to help others.

I can not sufficiently express thanks to Professor Soheir Zakaria, professor of Tropical Medicine, Cairo University, for all that she has done for me. Her never ending support and encouragement motivated me to accomplish this work, and the overwhelming motherhood, kindness, and guidance have been a constant source of inspiration for me. She has always been there, giving me the advice in every step of the way. I will never forget her unlimited help, continuous unfailing support and kind encouragement through out my life.

From the depth of my heart I want thank Professor **Ayman Yosry**, Professor of Tropical Medicine, Cairo University, who gave me the honor of working under his remarkable supervision that makes me really fortunate and who was kind to offer me much of his valuable time. He has really affected how I think about my research and has pushed me to work hard and rigorously. Our conversations about research and medicine in general have been invaluable in my career development as a doctor and as a researcher. He has been always the figure and the example that keeps me in the right path.

I'm especially indebted to Professor **Sania Kamel**, professor of clinical pathology, Cairo University, for her continuous support, kind encouragement, valuable directions, and practical generous advice all through the work until it was completed.

I would like to express my sincere gratitude and deep appreciation to all the transplantation team in Dar El Fouad hospital especially **Porf. Dr. Gamal Essmat, Prof. Dr. Ashraf Omar, Prof. Dr. Wahid Doss,**

and Prof. Dr. Magdy El seray.

Words can not express my gratitude and appreciation to my dear professors at **Tropical medicine department**, Cairo university, and to Professor **Naglaa Hashim El Sherif**, head of tropical medicine department, October 6 university, who has helped and supported me in innumerable ways and I'm really grateful to her.

Very special thanks to **Dr. Wafaa El Akel and Dr Alaa Haseeb** for their great help and advice.

I wish also to extend my thanks and appreciation to my colleagues in liver unite and tropical medicine department, Cairo university. For their help and support.

My greatest debt is to my family and my wife for their never ending support and care, they have been always to me the source of inspiration, strength, and success throughout my life.

Last but not least I want to thank the patients who suffer a lot hoping that this work will share in relieving their suffering.

RECOMMENDATIONS

- Serum PCT is a rapid reliable test for systemic infection with good diagnostic and prognostic ability and should be part of bed side evaluation of patients with suspected infection.
- Further large scale studies are needed with close follow up of serum PCT in recipients with persistently unexplained high levels in the immediate post operative period for more evaluation of its significance and relation to mortality.
- The use of small graft in LDLT should be discouraged as it may be associated with earlier and more profound susceptibility to infection. Further studies are needed to define the critical limit for the graft size.
- More attention should be directed in post operative management of cases with known risk factor for infection as low GRWR.
- As infection whether viral or bacterial became a global burden, more studies are recommended to evaluate a newer biomarkers of infection as proadrenomedullin, Neopterin, soluble CD14 subtype, leukocyte antisedimentation rate, and endotoxin assays.

LIST OF ABBREVIATIONS

ACCP	American College of Chest Physicians
ALP	Alkaline Phosphates
ALT	Alanin Amino Transferase
ARDS	Acute respiratory distress syndrome
AST	Aspartate Amino Transfearse
CBC	Complete Blood Count
CEA	Carcino-embryonic Antigen
CMV	Cytomegalo Virus
CRP	C – reactive protein
CT	Computed Tomography
CTP	Child-Turcotte-Pugh
EBV	Epstein-Barr Virus
ESR	Erythrocyte Sedimentation Rate
FHF	Fulminant Hepatic Failure
GGT	Gamma Glutamyl Trans peptidase
GRWR	Graft Recipient weight ratio
HAR	Hyper acute Rejection
HAT	Hepatic artery thrombosis
HAV	Hepatitis A Virus
HBc Ab	Hepatitis B Core Antibody
HBs Ab	Hepatitis B Surface Antibody
HBs Ag	Hepatitis B Surface Antigen
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HIV	Human Immunodeficiency Virus
HLA	Human Leukocytic Antigen
HSV	Herpes Simplex Virus
HTN	Hypertension
ICU	Intensive Care Unit
IL-6	Interlukin 6
INR	International Normalized Ratio
LDH	Lactate dehydrogenase
LDLT	Living Donor Liver Transplantation
LTx	Liver Transplantation
MELD	Model for End Stage Liver Disease
MODS	Multiple organ dysfunction syndrome
MRI	Magnetic Resonance Imaging

Mecithilin resistance staphylococcus aureus
National Institute of clinical excellence
National Institute of Health
Number
Orthotopic Liver Transplantation
Organ Procurement and Transplantation Network
Primary Biliary Cirrhosis
Pneumocystis carinii pneumonia
Polymearse Chain Reaction
Procalcitonin
Prostatic Specific Antigen
Primary Sclerosing Cholangitis
Post Transplant Lympho proliferative Disease
Partial Thromboplastin Time
Ribonucleic acid
Reduced-size Liver Transplantation
Respiratory Synciteal Virus
Society of Critical Care Medicine
Systemic inflammatory response syndrome
Split Liver Transplantation
Standard Liver Volume
Tuberculosis
Total Iron Binding Capacity
Transjugular intra hepatic porto-systemic shunt
Tumour necrosis factor
United Network of Organ Sharing
Urinary tract infection
Vancomycin Resistant Enterococci
Varicella Zoster Virus
White Blood Cells

LIST OF FIGURES

Fig. No.	Address	Page
Fig. I	Type and timing of infection after liver transplantation.	19
Fig. II	Amino acid sequence of PCT.	35
Fig. III	Calcitonin induction in sepsis compared to other	36
	inflammatory parameters	
Fig. IV	PCT plasma concentrations following infusion of	37
	bacterially contaminated solution	
Fig. V	Procalcitonin molecule	38
Fig. 1	Sex distribution of the studied patients.	88
Fig. 2	Etiology of liver disease of the studied patients.	88
Fig. 3	Child's score of the studied groups	89
Fig. 4	Duration of ICU stay (days) in the studied groups	90
Fig. 5	GRWR in infection and rejection groups	91
Fig. 6	Relation between GRWR and time of infection in the	92
	infected patients	
Fig. 7	Pulse and Respiratory rates in the studied groups	94
Fig. 8	Total & conjugated bilirubin and serum albumin in the studied groups	96
Fig. 9	CRP in the studied groups	97
Fig. 10	ALT & AST values in infection and rejection groups	98
Fig. 10	Sensitivity and specificity of CRP for diagnosing	99
rig. 11	infection	
Fig. 12	PCT values before the operation, at day 1 & 3 after the	100
	operation in the studied patients	
Fig. 13	Causes of early mortality	102
Fig. 14	PCT level at beginning of infection or rejection	103
Fig. 15	Relation between clinical improvement and PCT level	105
	after 48 hours of treatment	
Fig. 16	Relation between pattern of PCT and clinical outcome	106
	within 5 days of antimicrobial therapy in the 25	
	patients with infection.	
Fig. 17	CRP pattern in improved and not improved patients	107
Fig. 18	Type of organisms isolated in infection group	109
Fig. 19	PCT level done at diagnosis of non SIRS, SIRS, septic	117
	and severe sepsis patients.	

LIST OF Tables

Table. No.	Address	Page
Table I	Minimal Listing Criteria for Patients with Cirrhosis	11
Table II	UNOS liver status classification for patients older than 18 years according to disease severity.	62
Table III	Child-Turcotte-Pugh score	63
Table 1	Demographic features, etiology of liver disease, MELD score and Child-pugh score of the infection and rejection groups.	87
Table 2	Donor age & sex	89
Table 3	Impact of infection and rejection in hospital stay & ICU stay	90
Table 4	GRWR in infection and rejection groups	91
Table 5	Relation between GRWR and time of infection in the infected patients	92
Table 6	Clinical data of the 2 groups	93
Table 7	Laboratory findings in infection and rejection groups	95
Table 8	multivariate logistic regression of CRP and LDH	98
Table 9	PCT level before the operation, at day 1 & day 3 after the operation.	100
Table 10	Follow up of the 16 patients with persistently high PCT level in 3 rd POD	101
Table 11	Relation between PCT level in day 3 and early (less than 1month) mortality	101
Table 12	Causes of mortality among the studied patients	102
Table 13	Sensitivity and specificity of PCT done at clinical suspicion of infection for diagnosis of sepsis	103
Table 14	Relation between PCT levels and clinical improvement within 5 days from antimicrobial therapy in the 25 patients with infection	104
Table 15	Relation between pattern of PCT and clinical improvement within 5 days from antimicrobial therapy in the 25 patients with infection.	105
Table 16	Follow up of CRP in infection group (n=25)	106
Table 17	Comparing CRP levels in improved and not improved patients with infection	107
Table 18	Sites of infection in infection group	108

Table 19	Organisms isolated in infection group	108
Table 20	Organism type in infection group	109
Table 21	Relation between organism type & PCT level	110
Table 22	Relation between site of infection and PCT level done	111
	at beginning and after 12 hours of infection, and after	
	48 hours of treatment.	
Table 23	Relation between PCT level done at beginning of	112
	infection and the organisms isolated	
Table 24	Relation between PCT level done after 12 hours of	113
	infection and the organisms isolated	
Table 25	Relation between PCT level done after 48 hours of	114
	treatment of infection and the organisms isolated.	
Table 26	Morbidity (other than infection and rejection) in the	115
	studied patients.	
Table 27	Biliary complications in the 2 groups	115
Table 28	Demographic features and MELD score of sepsis	116
	(18), severe sepsis (7), SIRS (15), and non SIRS (10)	
	groups	
Table 29	Comparison: CRP, WBCs & LDH in the 4 groups	116
Table 30	PCT level at diagnosis of sepsis, severe sepsis, SIRS,	117
	or non SIRS patients	

LIST OF Contents

Address	Page
Introduction & Aim of the Work	1
Review of Literature	
Infection in living donor liver transplantation	7
Introduction	7
Infection following LDLT	13
Timing of infection	
Infections in the first month after transplantation	20
Infections one to six months after transplantation	22
Infections more than six months after transplantation	25
Risk factors for infection	27
Procalcitonin A New Marker Of Infection	32
Introduction	32
Procalcitonin, molecule and kinetics	
Clinical value of serum procalcitonin	39
Procalcitonin in renal and liver failure	47
Procalcitonin in systemic inflammatory response syndrome (SIRS), sepsis and septic shock	49
Procalcitonin after surgery and organ transplantation	55
Patients & Methods	60
Results	75
Discussion	118
Summary & Conclusion	
Recommendations	133
References	134

INTRODUCTION

The high prevalence of viral hepatitis B and C, and its associated chronic complications has led to the need for liver transplantation (*Chui, et al., 2003*).

The shortage of organ donors and the increasing number of patients waiting for liver transplantation are serious and difficult problems for transplant clinicians (*Grazi*, 2001). Over the last 10 years, the number of patients awaiting liver transplantation has increased more than 15-fold. During the same period, the number of liver transplants increased less than twofold. The median waiting time has increased dramatically, increasing numbers of patients on the waiting list (approximately 10% each year) are dying while waiting for a donor liver (*Eghtesad*, *et a.*, 2003).

Several innovative techniques have been developed to enlarge the utility of the relative constant pool of organs and to meet the growing needs of recipients. One recently advanced procedure utilizes a part of the liver as an allorgraft. Splitting cadaveric livers for two recipients has benefited the pediatric population, but the adult recipient pool has not experienced the same benefit (*Malago*, et al., 2001).

Another approach to enlarge the donor pool is living donor liver transplantation (LDLT), an extension of reduced-size liver transplantation. (*Eghtesad, et al. 2003*). It gives an increasing number of patients with end-stage liver disease the opportunity for effective

treatment in the face of a critical shortage of cadaveric organs. (Ryan, et al. 2002).

The issue of differentiating patients after liver transplantation with severe bacterial sepsis from others with similar non-specific symptoms and signs has generated interest in identifying useful laboratory markers of infection. The "unconventional" inflammatory markers such as fibronectin, interleukin 6, tumour necrosis factor, and β integrins, have been used as research tools but not gained widespread acceptance in routine practice (*De Werra*, *et al.* 1997).

Because the diagnosis of "possible sepsis" has implications for antibiotic usage and hospital stay, management strategies have evolved based on a combination of clinical and laboratory information. Although laboratory markers of infection might aid in differentiating the type of infection, opinions vary on the interpretation of tests such as the leukocyte count, neutrophil count, and C reactive protein concentration (*Browne, et al. 1997*).

A polypeptide identical to a prohormone of calcitonin, procalcitonin, was initially described as a potential marker of bacterial disease by *Assicot*, *et al.* (1993). Procalcitonin (PCT) is a 116 amino acid protein with a sequence identical to that of the prohormone of calcitonin (32 amino acids). Under normal metabolic conditions, hormonally active calcitonin is produced and secreted in the C-cells of the thyroid gland after specific intracellular proteolytic procession of the prohormone procalcitonin. In severe bacterial infections and sepsis, however, intact

procalcitonin is found in blood. Current research indicates that the origin of procalcitonin in these conditions is extra-thyroidal. C-cells of the thyroid are not believed to be the source of bacterial infection induced PCT. It is synthesized by leukocytes, neurocrine cells of internal organs such as the lung and the intestine as well as other cell types including macrophages and monocytic cells of various organs (such as liver). (Oberhoffer, et al. 1999). It is almost undetectable under physiological conditions, but rises to very high values in response to bacteraemia or fungaemia, and appears to be related to the severity of infection (Assicot, et al., 1993). This response can be duplicated by in vivo endotoxin administration, which results in a rapid rise in procalcitonin, paralleling that of tumour necrosis factor and interleukin 6 (Dandona, et al. 1994).

Sequential measurements in patients with bacteraemia have shown a rapid fall within 48 hours of antibiotic administration (Assocot, et al. 1993). It has been postulated that procalcitonin measurement might be superior to commonly used tests, such as C reactive protein measurement, as an aid to the early diagnosis of bacterial sepsis (Raynard, et al. 1997).

The usual signs of sepsis cannot be used to differentiate between severe hepatic necrosis and bacterial infection. Procalcitonin (PCT) has been reported to be a selective inflammatory marker that rises in bacterial infection but not in non-infection related inflammation (*Jackson*, *et al.* 2000).

Kuse, et al. (2000) studied the effect of procalcitonin level in differentiation between infection and rejection after liver transplantation