DIFFERENT ABLATION PROFILES IN

REFRACTIVE SURGERY

Essay submitted by:

Marwa Ahmed El-Biomey Mansour

In partial fulfillment of the M.Sc. degree in **Ophthalmology**

Supervised by

Prof. Dr. Mahmoud Abou Steit

Professor of Ophthalmology Faculty of Medicine Cairo University

Prof. Dr. Mohamad Saad Mostafa El-Balkini

Professor of Ophthalmology Research Institute of Ophthalmology

Dr. Ahmed EL-Sawy Mahmoud Habib

Lecturer of Ophthalmology
Faculty of Medicine
Cairo University

Faculty of Medicine
Cairo University Kasr El-Ainy
Cairo-Egypt
2009

Abstract

Laser vision correction (LVC) has grown with tremendous speed over the past decade. In addition to the choice of surface (photorefractive keratectomy, laser-assisted epithelial keratectomy, epi-laser in situ keratomileusis) or lamellar (LASIK, femto-LASIK) treatments, the surgeon now has to select a laser profile for myopic, hyperopic, or astigmatic treatment.

Wavefront-guided, wavefront-optimized, topography-guided and Q-factor adjusted ablation are the most advanced and frequently used profiles in current practice. Technical developments, clinical studies, and surgeon experience should help in selecting the best profile.

This study characterizes distinctly the various ablation profiles with the use of comparative studies emphasizing the advantages and disadvantages of each in correlation to their outcome, safety and predictability. Thus highlighting the prudent use of the different profiles to ensure optimum optical and visual outcome of the refractive procedure.

Key Words:

- Optical quality
- Aberrations Higher order aberrations
- Excimer laser
- Laser surgery in vision correction
- Wavefront
- Topography
- Munnerlyn's formula
- Q-factor

Acknowledgment

MY ENDLESS AND EVERLASTING THANKS TO GOD

My sincere gratitude and respect to *Prof. Dr. Mahmoud Abou*Steit, Professor of Ophthalmology, Cairo University, I would like to thank him for his outstanding encouragement, advice and his sincere endless support throughout this study.

My deep appreciation and thanks to *Prof. Dr. Mohamad Saad*, Professor of Ophthalmology, Research Institute of Ophthalmology, for his great valuable help, support and effort throughout this study.

I am also grateful to *Dr. Ahmed EL-Sawy*, Lecturer of Ophthalmology, Cairo University, for his tremendous effort and continuous valuable advice and supervision throughout this study.

I feel greatly indebted to *Dr. Tarek El-Naggar*, Lecturer of Ophthalmology, Research institute of Ophthalmology, for his great care, patience, sincere guidance and support with papers and recent updates in refractive surgery.

No words can express my acknowledgement, love and gratefulness to my family. Without their support, never ending encouragement and help, this work couldn't be accomplished.

Contents

■ List of abbreviations	vii
List of figures	X
■ List of tables	xiii
■ Introduction	1
Review of Literature	
* Anatomy and physiology of the cornea	
→ Macroscopic anatomy and measurements	5
→ Refractive power	6
→ Microscopic anatomy	6
→ Innervation and sensitivity	14
* Basics of corneal wound healing	
→ Importance of corneal wound healing in refractive	
surgery	16
Components of wound healing response	16
→ Effects on wavefront analysis	23
▶ Effects on customized treatments	24
→ Modulation of wound healing	29
* Ocular aberrations and optical quality	
→ Basic concepts of wavefront analysis	32
→ Aberrations	37
→ Defining optical quality	49

▶ Effect of higher order aberrations on optical quality	54
→ Measures of optical quality	57
* History of refractive surgery	60
* Excimer laser review	
▶ Basic concepts	68
→ Components	69
♦ Advantage	71
* Ophthalmic wavefront sensing devices	
→ History of wavefront sensing	72
→ Classification of wavefront sensors	73
Principles of different wavefront sensors	74
♦ Advantages and inconveniences	86
→ The role of the pupil	88
* Measures of the cornea and the latest developme	ents
in corneal topography	
→ Corneal topography	90
♦ Corneal tomography	90
→ Ultrasound biomicroscopy	94
* Different ablation profiles	
♦ Ablation optical zone design	96
▶ Profiles of ablation	97
• Conventional ablation profile	97
Wavefront-optimized profile	102

 Customized ablation 	105
 Wavefront-guided ablation profile 	106
Topography-guided ablation profile	116
 Aspheric or Q-factor adjusted laser profile 	127
→ Which laser profile should be used?	
Challenges in achieving optimal vision	139
* Summary * References	

List of Abbreviations

ACD: Anterior Chamber Depth

ALK: Automated Lamellar Keratoplasty

ArF: Argon Fluoride

ASA: Advanced Surface Ablation

BMP: Bone Morphogenic Proteins

BSCVA: Best Spectacle Corrected Visual Acuity

DWA: Dresden Wavefront Analyzer

EGF: Epidermal Growth Factor

Epi-LASIK: Epipolis Laser Assisted Stromal In situ Keratomileusis

FDA: Food & Drug administration

HOAs: Higher Order Aberrations

IL: Interleukin

IROC: Institut fur Refraktive und Ophthalmochirurgie Centre

LASEK: Laser Subepithelial Keratomileusis

LASER: Light Amplification by Stimulated Emission of Radiation

LASIK: Laser Assisted Stromal In situ Keratomileusis

LOAs: Lower Order Aberrations

LRT: Laser Ray Tracing

LSF: Line Spread Function

MMC: Mitomycin-C

MTF: Modulation Transfer Function

OCT: Optical Coherence Tomography

OPD: Optical Path Difference

OTF: Optical Transfer Function

PDGF: Platelet Derived Growth Factor

PERK: Prospective Evaluation of Radial Keratotomy

PMNL: Polymorph nuclear leukocyte

PRK: Photorefractive Keratectomy

PSF: Point Spread Function

PTF: Phase Transfer Function

PTK: Phototherapeutic Keratectomy

RK: Refractive Keratotomy

RMS: Root Mean Square

SA: Spherical aberrations

SMA: Smooth Muscle Actin

SRR: Spatially Resolved Refractometer

TNF: Tumor Necrosis Factor

TGF: Transforming Growth Factor

TSA: Topographical System Ablation

UCVA: Uncorrected Visual Acuity

VHF: Very High Frequency

WF: Wavefront

List of Figures

No.	Figure	Page
1	Microscopic anatomy of the human cornea	7
2	Schematic illustration of corneal innervations	15
3	Corneal wound healing cascade	17
4	Epithelial hyperplasia in custom ablations	24
5	Relation between light rays and wavefronts	33
6	Optical system and wavefront	33
7	Refractive errors and diagram using wavefront	34
8	Light from a point source will radiate outward in perfectly spherical diverging waves, until the waves encounter the eye.	35
9	Basics of wavefront aberrations	36
10	The shape of the wavefront and the effects on the retinal image	39
11	Coma aberration	40
12	Spherical aberration	40
13	Chromatic aberration	41
14	Diagrammatic presentation of longitudinal and transverse chromatic aberrations	42
15	Ocular aberrations	43
16	Pictorial dictionary of Zernike modes	45
17	Colored diagram of aberrations based on Zernike polynomial calculations	45
18	Three-dimensional pictorial directory of Zernike modes 0 to 20	46
19	Graphic representation of Zernike polynomials	47
20	Effect of optical defocus on the aberration map and simulated retinal image of an eye chart	48
21	Overview of the different levels of factors affecting quality of vision	49
22	Comparison of the different presentations of night vision complaints	55
23	Point-spread functions (left panels) and simulated retinal images of an eye chart (right panels), analyzed for two pupil diameters (2 mm, 6 mm)	58
24	Timeline of refractive surgery procedures	60
25	An excimer laser system	70
26	Principle of Hartmann-Shack Sensors	75
27	The modern aberrometer built on the Scheiner-Hartmann-Shack principle	75

28	Principle behind the Hartmann-Shack aberrometer	76
29	Wavefront devices that use the Hartmann-Shack technology	77
30	A, B) Schematic diagram of wavefront sensor based on the	79
	principles of Tscherning aberrometry. (C) Allegreto wavefront	
	analyzer (WaveLight)	
31	Examples of spot patterns	81
32	Schematic diagram of Tracey ray-tracing aberrometry	82
33	(A) Series of images on the CCD, for a single run in a laser ray	83
	tracing session on a post-LASIK eye. (B) Spot diagram for data	
	set in (A).	
34	Diagram representing the basic functioning of the principle used	84
	by the spatially resolved refractometer	
35	A) Diagram of the skiascopy based wavefront sensor and B) how	85
	it functions	
36	(A) Principle behind the spatially resolved refractometer. (B)	86
	Schematic diagram of wavefront sensor based on the principles of	
	dynamic skioloscopy. (C) Nidek OPDScan scanning system	
37	Scheme representing two main disadvantages of simultaneous	87
20	measurement of wavefront error in highly aberrated eyes	0.0
38	Four-Map Pentacam display	92
39	Keratoconus display allows us to compare each patient's corneal	93
	thickness and the progression of their thickness from the center to	
40	the periphery to the measurements in normal patients	0.4
40	High resolution OCT of the cornea	94
41	The difference between the test wavefront and the reference	96
	wavefront as a function of location in the exit pupil defines the aberration structure of the test wavefront	
42		99
42	Eye aberrations Flavotion man of contact long warnage	100
43	Elevation map of contact lens warpage. Orbscan shows anterior & posterior corneal surfaces	101
44	with pachymetry	101
45	Three-dimensional shapes and cross sections of ablation profiles	103
45	for -3.0D (red curve), -6.0D (blue curve), and -8.0D (black curve)	103
	myopic corrections at an optical zone of 6.5 mm	
46		106
40	Conversion of the wavefront map into an ablation profile	100
47		116
47	How to determine the topography-guided ablation profile Displays an axial curvature map of a -3.7D regular astigmatism in	117
70	an adjustable scale	11/
49	Topographic simulated customized ablation (TOSCA)	120
50	Example of irregular astigmatism with pattern	123

51	Example of irregular astigmatism without pattern	124
52	Compensation for the energy losses with additional pulses to the	129
	corneal periphery.	
53	Rays entering through a prolate cornea	129
54	Rays entering through an oblate cornea	130
55	Flowchart for the selection of the most suitable ablation profile	134
56	The amount of spherical aberrations induced is compared in this	135
	Diagram between A: Wavefront-guided correction and B:	
	Wavefront-guided combined with Q- factor adjusted ablation	
57	Decision-Tree applied for selecting the treatment mode	137
	(Aberration free/ Corneal wavefront-guided/ Ocular wavefront-	
	guided)	

List of Tables

No.	Table	Page
1	Clinical Hartmann Shack wavefront sensors and their associated excimer laser delivery systems	78
2	Reproducibility of the wavefront analyzer in an eye with a 7 mm pupil diameter	81
3	Interactive factors to consider for customized correction	105
4	Wavefront platforms and FDA approved wavefront-guided results (listed in order of FDA approval)	110
5	Classification of irregular astigmatism	123
6	Summary of different ablation profiles highlighting their advantages and disadvantages	138

Introduction

Excimer laser corneal refractive surgery

The subspecialty of refractive surgery is responsible for many of the innovations in the field of ophthalmology. Acceptance of these advancements has come from the incorporation of science and technology to increase the safety, accuracy, and predictability of altering the refractive error of the human eye. These developments offer new tools for the ophthalmologist to improve and enhance vision for our current patients as well as the patients of the future. Eye surgeons are able to correct ametropia by using different surgical techniques in a variety of anatomical locations. Historically, the cornea has been the primary interest of the refractive surgeon because of its anatomical accessibility. Excimer Laser Corneal refractive surgery is the ablation of corneal tissue by the development of light amplification by stimulated emission of radiation (LASER) technology. By the early 1980s, the precision of the 193 nm excimer laser was seen as a useful tool to reshape the corneal stroma. It has since become the basis for current corneal refractive surgery. The excimer laser has been a major innovation in ophthalmology because of its precise ability to remove tissue with negligible damage to the surrounding structures (Jacqueline et al, 2005).

Different methods of excimer laser corneal tissue ablation can be classified into:

1-Surface ablation and advanced surface ablation (ASA): (PRK-LASEK-Epi-LASIK-Epi-LASEK)

a. Photorefractive keratectomy (PRK)

Which carries the disadvantage of postoperative pain while the cornea heals. But still it remains an excellent option for mild to moderate corrections, particularly for cases associated with thin corneas, recurrent corneal erosions, or a predisposition to trauma (Ambrossio and Wilson, 2003).

b. Laser subepithelial keratomileusis (LASEK)

LASEK theoretically offers the advantages of avoiding the flap complications of LASIK and also, addresses the drawbacks of discomfort and delayed recovery associated with conventional PRK. LASEK may be a viable alternative for patients with low myopia, thin corneas and life styles that predispose them to flap trauma (**Chen and Azar, 2005**).

c. Epipolis Laser Assisted Stromal In situ Keratomileusis (Epi-LASIK)

Was recently introduced as a technique in which an epithelial flap is created with a microkeratome-like device. Preliminary studies suggest that this procedure may be less harmful to the basement membrane (Naoumidi et al, 2003).

2-Lamellar ablation: (LASIK)

Burrato and Pallikaris are credited with combining lamellar surgical techniques developed by Barraquer, and excimer laser technology in a procedure they termed laser assisted stromal in situ keratomileusis (LASIK). This technique allows for precise sculpting and subtraction of corneal stroma under a protective corneal flap, facilitating broad range correction of hyperopia, myopia and astigmatism while avoiding many of the disadvantages