ROLE OF SPECT/CT IN ONCOLOGY

Essay

Submitted for the fulfillment of M. Sc. degree in Nuclear Medicine

By

Yahya Ali Mohamed

Under supervision of

Dr. Sherif Mohamed El_Refaie

Ass. Professor of Nuclear Medicine-Faculty of Medicine

Cairo University

Dr. Maher Mahmoud M. El_Aaser

Lecturer of Nuclear Medicine- Faculty of Medicine

Cairo University

Dr. Hatem Ahmed Ismail Nasr

Lecturer of Nuclear Medicine- Faculty of Medicine

Cairo University

Faculty of Medicine Cairo University 2010

ACKNOWLEDGEMENT

- First of all, I owe my deepest gratitude to Dr. Sherif El_Refaie, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.
- It is an honor for me to thank Dr. Maher El_Aaser, who shepherded me through the bulk of the work.
- I would like to convey my gratitude to Dr. Hatem Nasr, his kindly but rigorous oversight of this essay constantly gave me the motivation to perform to my maximum ability.
- I am indebted to many of my colleagues to support me, for their help and precious advice.
- Lastly, I would like to thank my family for supporting me in this endeavor and enduring the many hours of my absences from them.

Content

Introduction	1
Aim of the Work	2
SPECT/CT imaging system	3
Brain tumors	26
Differentiated thyroid cancers	39
Neuroendocrine tumors	50
Malignant lymphoma	63
Bone metastases	74
Sentinel lymph nodes	82
Others	103
SPECT/CT versus PET/CT	118
Role of SPECT/CT in dosimetry	121
Case presentation	125
Conclusion	135
References	138

List of Abbreviation

AJCC	American joint committee on cancer
ALND	Axillary lymph node dissection
APUD	Amine precursor uptake and decarboxylase
ATP	Adinosine triphosphate
BDFS	Biochemical disease free survival
C.I.	Confidence interval
CAT	Computed axial tomography
CIS	Carcinoma in situ
Co-57	Cobalt 57
DRE	Digital rectal examination
DTC	Differentiated thyroid cancer
DTPA	Diethylene triamine pentaacetic acid
EBR	External beam radiotherapy
EDTMP	Ethylene diamine tetramethylene phosphonate
FAM	Functional anatomical mapping
FBP	Filter backprojectoion
Ga-67	Gallium 67
Ga-68	Gallium 68
GBq	Giga Bicquerel
GE	General electric
GI tract	Gastrointestinal tract
Gy	Gray
HD	Hodgkin disease
HPGe	High purity germanium
I-123	Iodine 123
I-131	Idoine 131
IMT	I-123 alpha methyle tyrosine

In-111	Indium 111
IRAC	Iteration with attenuation correction
IRNC	Iteration without attenuation correction
KD	Kilo Dalton
keV	Kilo electron volt
LEHR	Low energy high resolution
LN	Lymph node
Lu-177	Lutinum 177
mA	Milli Ampere
MAA	Macroaggregated albumin
MBq	Mega Becquerel
mCi	Milli Curi
MDCT	Multidetector computed tomography
MDP	Methylene diphosphonate
MEN	Multiple endocrine neoplasia
MIBG	Metaiodobenzylguanidine
Mm	Millimeter
Mmol	Millimole
MRI	Magnatic resonance imaging
mSv	MilliSievert
MTC	Medullary thyroid cancer
NaI(Tl)	Sodium iodide thallium
NET	Neuroendocrine tumor
Ng	Nanogram
NHL	Non Hodgkin lymphoma
NIS	Sodium iodide symporter
NSCLC	Non small cell lung cancer
OSEM	Order subset expectation maximization
P	Propability

PET/CT	Positron emission tomography/computed tomography
PMT	Photomultiplier tube
PPV	*
	Positive predictive value
PSA	Prostate specific antigen
PSMA	Prostate surface membrane antigen
rh-TSH	Recombinant human-thyroid stimulating hormone
RIT	Radioimmunotherapy
RP	Radical prostatectomy
RT	Radiotherapy
SCC	Squamous cell carcinom
SCLC	Small cell lung cancer
SD	Standard deviation
SIRT	Selective internal radiation therapy
SM	Sestamibi
Sm-153	Sammarium 153
SN	Sentinel node
SNB	Sentinel node biopsy
SPECT/CT	Single photon emission computed tomography/computed tomography
SPN	Solitary pulmonary nodule
SRS	Somatostatin receptor scintigraphy
Ssr	Somatostatin subtype receptor
Tc-99m	Technetium 99m
TF	Tetrofosmin
Tg	Thyroglobulin
Tl-201	Thallium 201
TSH	Thyroid stimulating hormone
UCSF	University of California, Sanfrancisco
US	United State

WB	Whole body
WBS	Whole body scan
WHO	World health organization
Xe-131	Xenon 131
Y-90	Yttrium 90

List of Figures

Fig.1	Schematic display of data acquisition of combined emission–transmission imaging system	Page 3
Fig. 2	Combined SPECT/CT system configured at UCSF	Page 4
Fig. 3	GE Hawkeye system	Page 5
Fig. 4	Phillips Precedence system	Page 6
Fig. 5	Siemens Symbia system	Page 7
Fig. 6	Spatial resolution deteriorates with increasing distance from the collimator	Page 13
Fig. 7	Filtered back projection of a point source	Page 17
Fig. 8	Basic components of one type of CT scanner	Page 19
Fig. 9	Rotate-stationary configuration & Rotate-rotate configuration of CT scanner.	Page 20
Fig. 10	Axial versus helical scanning & pitch	Page 22
Fig. 11	60-year-old woman with previously resected glioblastoma	Page 29
Fig. 12	60-year-old man with lung cancer metastasis in the right temporal lobe	Page 32
Fig. 13	36-year-old woman with previously resected secreting pituitary adenoma	Page 34
Fig. 14	71-year-old patient with high-grade glioma of the right frontal lobe	Page 36
Fig. 15	50-year-old man with previously resected glioma of the right temporal lobe	Page 38
Fig. 16	47-y-old woman with differentiated papillary thyroid carcinoma underwent total thyroidectomy	Page 42
Fig. 17	15-year-old female who underwent thyroidectomy for papillary thyroid carcinoma	Page 45
Fig. 18	69-y-old man with thyroidectomized papillary thyroid carcinoma	Page 49
Fig. 19	Patient with carcinoid tumor and lymph node metastasis in the right groin	Page 54

Fig. 20	53-year-old woman with multiple metastases from lung neuroendocrine tumor	Page 58
Fig. 21	patient with metastatic thymic neuroendocrine tumor	Page 60
Fig. 22	45-year-old woman, 5 years after resection of a sacral carcinoid	Page 62
Fig. 23	Pre-treatment evaluation of HD with supra- and infra diaphragmatic involvement	Page 66
Fig. 24	Pretreatment evaluation of high-grade NHL	Page 67
Fig. 25	Ga-67 SPECT/CT in a patient with HD	Page 69
Fig. 26	Ga-67 SPECT/CT in a patient with NHL	Page 70
Fig. 27	Post-control study of chemotherapy in women with non-Hodgkin lymphoma (NHL) of large cell type B	Page 72
Fig. 28	66-year-old woman with osteosarcoma of the scapula	Page 77
Fig. 29	66-year-old woman with lung cancer	Page 79
Fig. 30	A hidden SN	Page 86
Fig. 31	Multiple draining sites	Page 87
Fig. 32	A woman with right breast cancer	Page 89
Fig. 33	SN in patient with prostatic cancer	Page 93
Fig. 34	Patient with atypical sentinel node in abdominal wall	Page 94
Fig. 35	Level system of cervical lymph node classification	Page 97
Fig. 36	Patient with melanoma in back	Page 99
Fig. 37	Sentinel lymph node imaging	Page 102
Fig. 38	SPECT/CT of lymph node in patient with prostatic cancer	Page 106
Fig. 39	SPECT/CT in patient with prostatic cancer	Page 107
Fig. 40	Sixty-one years old patient with a proven non- palpable 6 mm infiltrating ductal carcinoma in the external quadrants of the right breast	Page 110
Fig. 41	65-year-old man with a SPN in the upper lobe of the left lung	Page 115
Fig. 42	62-year-old man with SCLC	Page 117

List of Cases

Case 1	35-year-old man with previously resected	Page 125
	glioblastoma of the left frontal lobe	
Case 2	43-y-old woman who had undergone near	Page 126
	total thyroidectomy for follicular thyroid	
	carcinoma	
Case 3	41-year-old woman with primary gasrinoma,	Page 127
	referred for SRS	
Case 4	45 year old woman with non-Hodgkin	Page 128
	lymphoma (NHL) of B-cells	
Case 5	69-year-old man, Gleason score 6	Page 129
Case 6	A woman with right breast cancer	Page 130
Case 7	Lymphoscintigraphy with 99mTc-sulfur	Page 131
	colloid for SLNB	
Case 8	67-year-old male 5 years after RT that	Page 132
	included both EBRT and brachytherapy for	
	Gleason 3 + 4 adenocarcinoma found on	
	biopsy	
Case 9	Fifty-six year old patient with a proven non-	Page 133
	palpable 10 mm infiltrating ductal carcinoma	
	in the lower quadrants of the left breast	
Case 10	59-year-old man with right lung NSCLC	Page 134

Abstract

Single-photon emission computed tomography (SPECT) is

accurate methods for detecting cancer and related metabolic

abnormalities, but they often do not provide the anatomical

landmarks needed to precisely localize lesions. Computed

tomography (CT) scan, on the other hand, offer excellent anatomic

detail but are less sensitive because they do not provide functional

detail. Hybrid imaging in oncological applications improve the

anatomical landmarks as well as the attenuation and accurate

assessment of radiation dosimetry. The system will lead medical

imaging to new horizons.

Key words: SPECT/CT, cancer

Introduction & Aim of the Work

Introduction

The increasing clinical demand for more specific diagnostic systems and improved algorithms aimed at optimizing patients' management has contributed to the recent development of hybrid imaging devices capable of coregistering anatomical and functional data. The diffusion into clinical practice of multimodality imaging performed with PET/CT and SPECT/CT enhances both sensitivity and specificity of the non-invasive diagnostic approach to patients with various disorders (1).

Single-photon emission computed tomography (SPECT) has been a mainstay of nuclear medicine practice for several decades. More recently, combining the functional imaging available with SPECT and the anatomic imaging of computed tomography (CT) has gained more acceptance and proved useful in many clinical situations. Most vendors now offer integrated SPECT/CT systems that can perform both functions on one gantry and provide fused functional and anatomic data in a single imaging session. In addition to allowing anatomic localization of nuclear imaging findings, SPECT/CT also enables accurate and rapid attenuation correction of SPECT studies (2).

The recent introduction of a hybrid imaging device containing a low dose CT system and a gamma camera on a single gantry enabled the sequential acquisition of the two imaging modalities, with subsequent merging of data into a composite image display. These hybrid studies have led to a revolution in the field of imaging, with highly accurate localization of tumor sites, assessment of invasion into surrounding tissues, and characterization of their functional status (3).

Aim of the work

The aim of the work is to review the literature of the value of SPECT/CT in:

- Diagnosis of the primary tumor.
- Staging of the disease.
- Followup and monitoring of the therapy.
- Detection of recurrence.
- Dosimetric estimations for target radionuclide therapy.

Chapter 1

SPECT/CT imaging system