Applications of Magnetic resonance diffusion tractography in intra-axial brain tumors

Essay
Submitted for fulfillment of Master Degree in Radiology.

 $\mathcal{B}y$

Reham Farghaly Ahmed Ibrahim

M.B., B.Ch; Cairo University

Supervised by

Prof. Dr. Adel Belal

Prof. of Radiology, Radiodiagnosis department, Cairo University.

Dr. Omnia Mokhtar Nada

Lecturer of Radiology, Radiodiagnosis department, National Cancer Institute.

Faculty of Medicine – Cairo University. 2010

بسم الله الرحمن الرحيم

DEDICATED TO MY HUSBAND AND MY DAUGHTER

Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful. All the praises and thanks to ALLAH for making this work possible.

I am deeply and forever indebted to *Professor Dr., Adel Belal.* I sincerely appreciate his endless guidance and encouragement. It has been a privilege to be taught and guided by such a supportive and patient supervisor. His truly instinctive knowledge had inspired and enriched my work and research.

My sincere thanks to, *Dr. Omnia Mokhtar* for her continuous guidance and support.

My heartfelt thanks and gratitude to *Professor Dr., Moharam Badawey; head of Radiology department (NCI);* I appreciate from all my heart his support.

My thanks and my love to all my professors and colleagues in the Radiology department (NCI) for their support. I would like to express my deepest sense of gratitude especially to my colleague *Aida Ali*, who helped me a lot during my work.

Last but not least; I would like to thank my family for their endless love and support

Thanks

ABSTRACT

The goal of surgical treatment is to remove as much tumor tissue as possible, while in the same time preserving the integrity of eloquent cortical areas and/or white matter tracts, and thus avoid postoperative neurological deficits. However, tumor infiltration of eloquent cortical areas and/or white matter tracts may preclude safe gross total resection

KEY WORDS

Applications

Magnetic

tractography

TABLE OF CONTENTS

List of abbreviations	
List of figures	IV-VII
Introduction	2
Aim of work	5
Review of Literature	6-99
Chapter 1: Radiological Anatomy of White Matter Fibers Tracts	6
Chapter 2: Physics and Techniques	35
Chapter 3: pathology of brain tumors	48
Chapter 4: Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumors	65
Illustrative cases	101-114
Summary	115-117
References	118-130
Arabic summary	أ_ب

LIST OF ABBREVIATIONS

1H-MRSI Proton MR spectroscopic imaging

3D 3-Dimensional

ADC Apparent Diffusion Coefficient

ALIC Anterior Limb Of The Internal Capsule

BOLD Blood Oxygen Level Dependent

CC Corpus Callosum

cg Cingulum

Cho choline

CNS Central Nervous System

CPC Choroid Plexus Carcinoma

CPP Choroid Plexus Papilloma

CPT Choroid Plexus Tumors

CSF Cerebrospinal Fluid

cst Corticospinal Tract

CT Computerized Tomography

DT Diffusion Tensor

DTI Diffusion Tensor Imaging

DTI-FT DTI Fiber Tracking

DTT Diffusion Tensor Tractography

DW Diffusion Weighted

enhanced Apparent Diffusion Coefficient

EPI Echo Planar Imaging

FA Fractional Anisotropy

FACT Fibre Assignment By Continuous Tracking

fMRI Functional MR Imaging

fx Fornix

IC Internal Capsule

icp Inferior Cerebellar Peduncle

ifo Inferior Fronto-Occipital Fasciculus

ilf Inferior Longitudinal Fasciculus

iMRI Intraoperative MR Imaging

LGN Lateral Geniculate Nucleus

mcp Middle Cerebellar Peduncle

ml Medial Lemniscus

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRS MR spectroscopy imaging

MS Multiple Sclerosis

NAA *N*-acetylaspartate

OR Optic Radiation

PLIC Posterior Limb Of The Internal Capsule

PMAs Primary Motor Areas

PROPELLER Periodically Rotated Overlapping Parallel Lines With

Enhanced Reconstruction

ROI Regions Of Interest

RT Radiotherapy

scp Superior Cerebellar Peduncle

sfo Superior Frontooccipital Fasciculus

slf Superior Longitudinal Fasciculus

SNR Signal-To-Noise Ratio

SRT Stereotactic Radiotherapy

st Stria Terminalis

T2WI T2 Weighted Image

unc Uncinate Fasciculus

WHO World Health Organization

WM White Matter

WMT White Matter Tractography

LIST OF FIGURES

		Page
Figure (1):	Association Fibers sagittal view	7
Figure (2):	Association Fibers coronal view	8
Figure (3):	Cingulum	9
Figure (4):	Directional map for Cingulum and other association fibre	10
Figure (5):	Superior and inferior occipitofrontal fasciculi and uncinate fasciculus	13
Figure (6):	Uncinate fasciculus Tractogram	14
Figure (7):	Superior longitudinal fasciculus	16
Figure (8):	Inferior longitudinal (occipitotemporal) fasciculus.	17
Figure (9):	Trajectories of the cingulum & fornix / stria terminalis	18
Figure (10):	Corticospinal tract	20
Figure (11):	Corona Radiata	22
Figure (12):	: Schematic illustrations of an ROI setting for sensory and pyramidal	
	tractography it's corresponding and thalamic connections	24
Figure (13) :	Overview of the ConTrack method for identifying the optic radiation	26
Figure (14):	Internal capsule, axial view	27
Figure (15):	Corpus callosum.	29

Figure (16):	The trajectory of the superior cerebellar peduncle and its identification	
	in color maps	32
Figure (17):	The trajectory of the inferior cerebellar peduncle and its identification	
	in color maps.	33
Figure (18):	The trajectory of the middle cerebellar peduncle and its identification	
	in color maps	33
Figure (19):	The trajectory of the corticospinal tract and medial lemniscus and their	
	identification in color maps	34
Figure (20):	Diffusion within a single voxel	36
Figure (21):	The cellular elements that contribute to diffusion anisotropy	37
Figure (22):	Diffusion ellipsoids (tensors)	39
Figure (23):	Ellipsoid Model	40
Figure (24):	Diffusion Tensor.	41
Figure (25):	Anisotropy map and the color coded orientation map	41
Figure (26):	Streamline Tractography	43
Figure (27) :	Probabilistic Tractography	43
Figure (28):	Pattern of main fibre tract involvement: displaced	67
Figure (29):	Tract displacement: Left parietooccipital AVM	69
Figure (30):	Tract displacement	70

Figure (31):	Pattern of main fibre tract involvement: invaded.	71
Figure (32):	Pattern of main fibre tract involvement: disrupted	72
Figure (33):	Complete tract disruption.	73
Figure (34):	Pattern of main fibre tract involvement: infiltrated	74
Figure (35):	Pattern of main fibre tract involvement: edematous	74
Figure (36):	Patterns of main fibre tract involvement by tumor	76
Figure (37):	Combined functional and DTI tractography	84
Figure (38):	Patient with Grade 3 oligoastrocytoma	87
Figure (39):	Patient with Grade 4 glioblastoma multiforme	88
Figure (40):	Patient with Grade 2 oligodendroglioma	88
Figure (41):	DTI based tractography for planned radiation	90
Figure (42):	Tractography in cerebral infarction	92
Figure (43):	Tractography in lacunar infarction	92
Figure (44):	Tractography in MS	94
Figure (45):	Tractography in epilepsy	96
Figure (46):	Tractography in amyotrophic lateral sclerosis	98
Figure (47):	Tractography in different parkinsonian disorders	99
Figure (48):	Case 1: Ependymoma In the brain stem with associated vasogenic	
	edema	101

Figure (49):	Case 2: Brain stem glioma	. 102
Figure (50):	Case 3: an infiltrating brainstem glioma	103
Figure (51):	Case 4: Pre- and postoperative for patient with grade III astrocytoma	104
Figure (52):	Case 5: Preoperative and postoperative of a left frontal pilocytic	
	astrocytoma	106
Figure (53):	Case 6 imaging	107-108
Figure (54):	Case 7 imaging	109-111
Figure (55):	Case 8 imaging	112-114

INTRODUCTION

INTRODUCTION

The goal of surgical treatment is to remove as much tumor tissue as possible, while in the same time preserving the integrity of functionally eloquent gray and white matter structures, and thus avoids postoperative neurologic deficits. However, tumor infiltration of eloquent cortical areas and/or white matter tracts may preclude safe gross total resection. Consequently, knowledge of the relationship between tumor and eloquent cortical and white matter regions might be helpful for preoperatively determining the extent to which a brain tumor can be surgically removed, and also for guiding the actual surgical procedure (**Talos et al., 2007**).

The primary motor cortex and the motor fibers constitute one of the most important eloquent regions of the brain; they are connected to the lower motor neurons and control muscular movement. Thus, being able to determine whether a surgically treatable brain lesion (such as a tumor) is located near the motor system would be of major clinical importance. The primary motor cortex is relatively easily identified on CT and magnetic resonance (MR) imaging using well-established neuroradiologic methods (Yousry et al., 1997).

On the other hand, identifying the location of the motor pathways has been much more challenging. Extensive white matter infiltration by primary brain tumors is a common occurrence (**Talos et al., 2007**). Moreover, resecting brain