

A Study on Shade Selection and Duplication

Thesis submitted to the Faculty of Oral and Dental Medicine,
Cairo University, in partial fulfillment of the requirements
for the Master Degree "Dental Materials"

By Rasha Mohamed Abd-El-Raouf

B.D.S. 2003(Cairo University)

Demonstrator of Dental Materials

Faculty of Oral and Dental Medicine

Cairo University

Faculty of Oral and Dental Medicine,

Cairo University

2009

A Study on Shade Selection and Duplication

Abstract:

The aim of this study was to investigate the effect of some factors on shade selection and duplication. Fifty dentists participated in this study as observers and divided into five groups, according to their color vision, gender and clinical experience. Each group had been examined before and after training on shade selection by a software program. Shade selection in vivo was also assessed visually and instrumentally. Fifty-four metal-ceramic specimens were prepared and classified into three groups according to the different technicians who built up the veneering ceramic of the specimens. Each group was further subdivided into three subgroups according to the ceramic thickness. The duplicated shades of the specimens were evaluated instrumentally. Color vision and training had significant effect on shade selection. There was moderate degree of correlation between the visual and instrumental techniques in vivo. The effect of ceramic thickness on the duplicated shade was dependent on the inter-technician variability. High inter-technician variability was noticed in contrast to the low intra-technician variability.

Keywords:

Shade selection

Shade duplication

Color vision deficiency

Gender

Clinical experience

Training

 $Shade\ guide$

Spectrophotometer

Ceramic thickness,

Inter-technician variability

Intra-technician variability

Supervisors

Prof. Dr. Ahmed Nour El-Din Ahmed Habib

Professor of Dental Materials

Biomaterials Department

and

Dean of Faculty of Oral and Dental Medicine

Cairo University

Prof. Dr. Taheya Ahmed Moussa

Professor of Dental Materials

Biomaterials Department

Faculty of Oral and Dental Medicine

Cairo University

Dedication

To my family for their extreme effort

To Prof. Dr. Ahmed Nour El-Din Ahmed Habib and Prof. Dr. Taheya Ahmed Moussa, who really adopted me during this thesis

Acknowledgement

I would like to express my deepest thanks and appreciation to **Prof. Dr. Ahmed Nour El-Din Ahmed Habib**, Professor of Dental Materials and Dean of Faculty of Oral and Dental Medicine, Cairo University, for his tremendous support, guidance and encouragement, without which this work could never have come into existence.

Words can never express my deepest gratitude to **Prof. Dr. Taheya Ahmed Moussa,** Professor of Dental Materials, Faculty of Oral and

Dental Medicine, Cairo University, for her close supervision and

valuable guidance. It was a great honor to work under her supervision.

My deepest thanks and appreciation go to the most cooperative and kind Professor, the spiritual-father of Biomaterials Department, **Prof. Dr. Zohair Mohamed Abu-Tabl,** Professor of Dental Materials, Faculty of Oral and Dental Medicine, Cairo University, for his precious instructions.

I would like to warmly thank all the staff members of Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University for their unforgettable support, concern and co-operation especially **Dr**. **Gihan Waley**, Lecturer of Dental Materials.

Also, I would like to express my sincere great appreciation to the great effort of my family and to my aunt Prof. Dr. Wafa Abd-El-Raouf, Professor of corrosion, Metallurgic Research and Development Institute, for her valuable advices.

Special thanks are owed to my friends; Alia Mahrose and Basma

Abd-El-Daeem for their tenderness and continuous help.

I would like to express my thanks to **Dr. Fatma El-Sharkawy**, Lecturer of Photometry, National Institute of Standards, for her help in understanding the basic science of color.

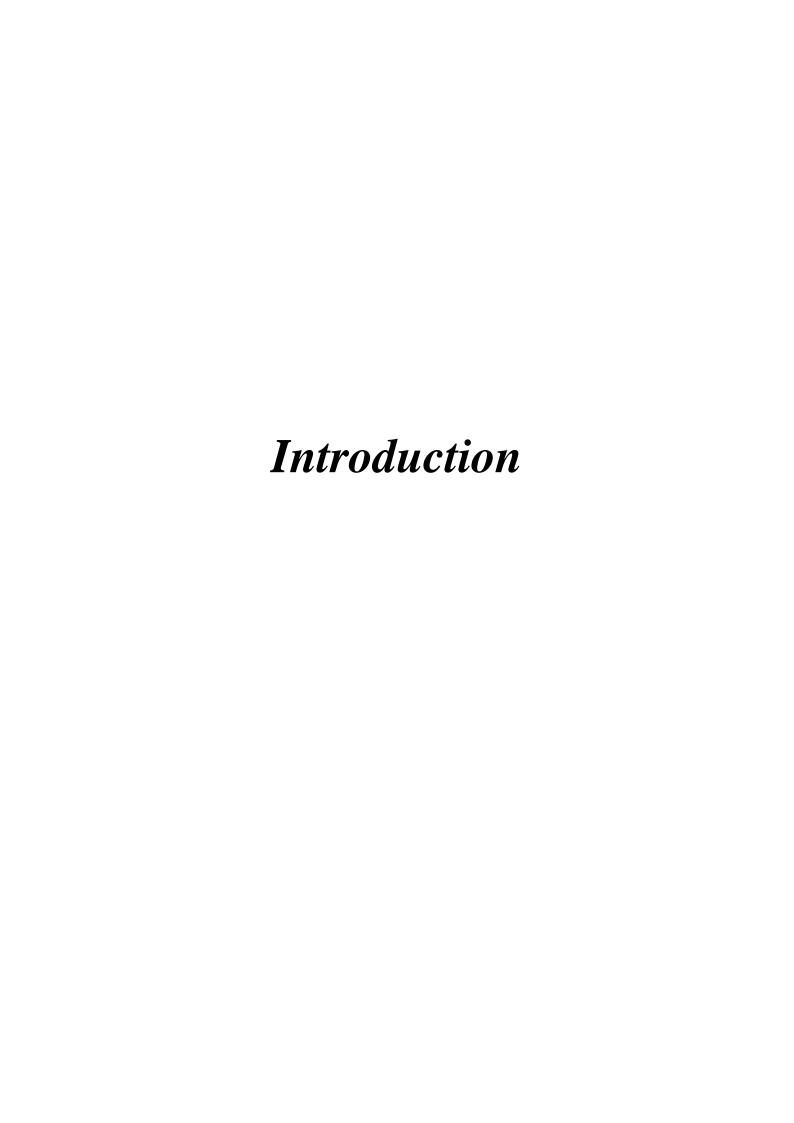
Last but not least, I would like to express my appreciation to **Prof**. **Dr. Amany Mossa**, Professor of Statistics, Institute of Statistical Study and Research, Cairo University, for her assistance in analyzing the data.

Contents

		Page
-	Introduction	1
-	Review of Literature	3
-	Aim of the Study	31
-	Materials and Methods	32
-	Results	61
-	Discussion	85
-	Summary and Conclusion	95
-	References	. 99
_	Arabic Summery	

List of Tables

	F	Page
Table I	Materials used and their composition.	32
Table II	Classification of the observers.	36
Table III	Interpolated shades of Vita Easyshade spectrophotometer.	42
Table IV	Interaction of variables of shade duplication.	46
Table V	Mean scores of deficient and normal color vision male freshly graduated groups by the "tooth-guide trainer" examples.	62
Table VI	Mean scores of normal color vision female and male groups by the "tooth-guide trainer" exam.	64
Table VII	Mean scores of normal color vision freshly graduated and clinically experienced groups by the "tooth-guide trainer" exam.	66
Table VIII	Mean scores of untrained and trained groups by the "tooth-guide trainer" exam.	68
Table IX	Correlation between selected shades in vivo among the trained deficient and normal color vision male freshly graduated groups.	71
Table X	Comparison between selected shades in vivo among normal trained color vision female and male group.	73
Table XI	Comparison between selected shades in vivo among the trained normal color vision freshly graduated and clinically experienced groups.	75
Table XII	Correlation between the selected shades by the visual and instrumental techniques in vivo.	77


Table XIII	Mean ΔE values between the target shade and those duplicated by the different technicians in different thicknesses.	78
Table XIV	Mean ΔE values between the target shade and those duplicated in different thicknesses by the different technicians.	80
Table XV	Two-way ANOVA testing the difference between ceramic thicknesses, inter-technician variability and their interaction.	82
Table XVI	Mean difference, standard error and P value of LSD for different ceramic thicknesses.	82
Table XVII	Mean difference, standard error and P value of LSD for different technicians.	82
Table XVIII	Mean ΔE values between the shades of the specimens duplicated by the same technician in thicknesses th_1 , th_2 and th_3 .	83

List of Figures

	1	Page
Figure 1	Veneering ceramic; Vita VM13.	33
Figure 2	Nickel-chromium based dental alloy; System KN.	33
Figure 3	Glazing materials; Vita Akzent Glaze and Finishing agent.	33
Figure 4	Ishihara test for screening color vision.	35
Figure 5	Vitapan 3D- Master shade guide.	37
Figure 6	Tooth-guide trainer program exam.	39
Figure 7	Vita Easyshade Spectrophotometer.	41
Figure 8	The tip of Vita Easyshade probe.	43
Figure 9	The constituents of Vita Easyshade probe.	43
Figure 10	The probe of the Vita Easyshade in the calibration holder.	45
Figure 11	The probe flushed to the tooth surface.	45
Figure 12	Split metallic copper mold.	48
Figure 13	Metallic mold with wax pattern.	48
Figure 14	Wax patterns attached to crucible former.	50
Figure 15	Metallic specimens after devesting.	50
Figure 16	Finished and sandblasted metallic substructures of metal	50
	ceramic specimens.	
Figure 17	Porcelain furnace used for firing the specimens.	51
Figure 18	Wash opaque layer before firing.	52
Figure 19	Wash opaque layer after firing.	52
Figure 20	Opaque layer after firing.	53
Figure 21	Dentin and enamel porcelain before firing.	54
Figure 22	Metal-ceramic specimens.	55
Figure 23	Specimens in 3 different thicknesses.	56

Figure 24	Metallic template used for assessing the shade of the specimens.	59
Figure 25	Metallic template over the specimen in the mold.	59
Figure 26	Vita Easyshade tip passing the hole.	59
Figure 27	Effect of color vision on the shade selection scores in male freshly graduated groups by the "tooth-guide trainer" exam.	62
Figure 28	Effect of gender on the shade selection scores in normal color vision groups by the "tooth-guide trainer" exam.	64
Figure 29	Effect of clinical experience on the shade selection scores in normal color vision groups by the "tooth-guide trainer" exam.	66
Figure 30	Effect of training on the shade selection scores in all the groups by the "tooth-guide trainer" program.	69
Figure 31	Effect of color vision on shade selection in vivo, by trained groups.	71
Figure 32	Effect of gender on shade selection in vivo, by trained normal color vision groups.	73
Figure 33	Effect of clinical experience on shade selection in vivo, by trained normal color vision groups.	75
Figure 34	Different selected shades by visual and instrumental techniques in vivo.	77
Figure 35	Mean ΔE values between the target shade and those duplicated in thicknesses th_1 , th_2 and th_3 by technicians; T_1 , T_2 and T_3 .	79
Figure 36	Effect of ceramic thickness on the shade duplication of metal- ceramic specimen.	81

Figure 37	Mean ΔE values between the target shade and those duplicated by technicians; T_1 , T_2 and T_3 in thicknesses th_1 , th_2 and th_3 .	81
Figure 38	Effect of inter-technician variability on the shade duplication of metal-ceramic specimens.	81
Figure 39	Mean ΔE values between the shades of the specimens duplicated by the same technician in thicknesses th_1 , th_2 and th_3 .	84
Figure 40	Effect of intra-technician variability on the shade duplication of metal-ceramic specimens.	84

Introduction

An attractive smile is the ultimate objective of esthetic dentistry that adds to the personal communication skills. The ability of a restoration to match the color of the adjacent natural teeth is an integral part of its success. Color matching may be the only parameter of treatment with which the patient is concerned. Failure to match the proper color of the teeth may lead to failure of mechanically and biologically successful restoration. Up to 80% of the patients expressed their dissatisfaction with the perceptible color of their dental restorations ⁽¹⁾. Thus, proper color reproduction is considered to be one of the most complex and frustrating problems in restorative dentistry.

Although visual shade selection is the most frequently applied technique in dentistry, controversy still exists whether this technique is reliable or not due to individual variations. In an attempt to obtain more scientific and consistent shade measurements, instruments such as colorimeter and spectrophotometer were introduced. However, it is not clear whether the use of instrumental shade selection technique would provide an additional advantage in esthetic dentistry.

Despite the fact that proper color reproduction for direct esthetic restoration is totally the dentist responsibility, yet other technical and manipulative variables may still play a role in the resultant shade of indirect restoration. Consequently, the proper color reproduction of indirect restorations depends not only on the proper shade selected by the dentist, but also on the proper shade duplicated by the technician.

Thus, this study was designed to investigate the effect of some individual variations on visual shade selection as well as to assess shade