

Dietary effect of some plants on liver functions and lipid profile in experimental animals

By

Sahar Mousa Galal Ahmed Mousa

Assistant Lecturer in the Department of Biochemistry and Nutrition, Women's College, Ain Shams University

Thesis

Submitted for partial fulfillment of Ph. D. Degree in Biochemistry and Nutrition

Supervisors

Prof. Dr. Nazira Afify Shehata,

Professor of Nutrition, Department of Biochemistry and Nutrition, Women's College, Ain Shams University

Dr. Fatma Hassan Abd el-Razek,

Ass. Professor, Department of Biochemistry and Nutrition, Women's College, Ain Shams University

Dr. Andaira Asaad Abadeer,

Lecturer, Department of Biochemistry and Nutrition, Women's College, Ain Shams University

ACKNOWLEDGMENT

I would like to express my deepest gratitude to Prof. Dr.Nazira Afify Shehata, Professor of Nutrition, Department of Biochemistry and Nutrition, Women's College, Ain Shams University for her suggestion, continuous guidance, evaluation of the work and great encouragement.

My deep appreciation to Dr. Fatma Hassan Abd el-Razek, Ass. Professor in the Department of Biochemistry and Nutrition, Women's College, Ain Shams University for her great help and evaluation of the work.

I wish to express my thanks to Dr. Andaira Asaad Abadeer, Lecturer in the Department of Biochemistry and Nutrition, Women's College, Ain Shams University for her continuous advice.

I wish to express my thanks to **Dr. Mona Nosseir,** Ass. Professor in Teudor Belhars Institute, for great help in histopathological examination.

LIST OF CONTENTS

	Page No.
Introduction and Aim of the	work1-5
Review of literature	6-67
Antioxidants	6
Curcuma longa	16
Zingiber officinale	34
Moringa oleifera	44
Cichorium intybus	53
Sonchus oleraceus	61
Materials and Methods	68-85
Results	86-130
Discussion	131-151
Summary	152-158
Recommendations	159
References	160-184
Appendices	
Arabic summary	

ABSTRACT

Sahar Mousa Galal. Dietary effect of some plants on liver functions and lipid profile in experimental animals. Unpublished Doctor of Philosophy dissertation, Biochemistry and Nutrition, Women's College, Ain Shams University, 2005.

Fifty six male albino rats, Sprague Dawley strain were used. The rats were divided into seven groups of eight rats each with similar mean total weight. The rats were divided into two experiments. In experiment I, forty rats were used and divided into five groups. But, in experiment II, thirty two rats were used and divided into four groups where group 1 and 2 are the same in the two experiments and rats in two experiments were fed the experimental diets at 14% protein level with different types of plants for four weeks. Food and water were provided ad-libitum. At the end of the two experiments, rats were sacrificed under ether anesthesia and blood sample was taken from hepatic portal vein from each rat. Blood samples were subjected to the determination of serum and liver lipid profile and serum ALT, AST, ALP, MDA and erythrocyte -SOD. Also liver and heart were subjected to histopathological examination. The results indicated that the lowest mean value for serum total lipids, triacylglycerols, total cholesterol and VLDL- cholesterol was found in group of rats fed

HFC diet+ Moringa leaves and HFC diet+ turmeric as compared with positive control group. But the lowest mean value for serum LDL- cholesterol and highest mean value for serum HDLcholesterol was found in group of rats fed HFC diet+ sonchus and HFC diet+ turmeric as compared with positive control group. While lipid pattern in liver showed a significant decrease in group of rats fed HFC diet+ Moringa leaves and HFC diet+ turmeric as compared with positive control group and other plant groups. Also, the lowest mean value in serum ALT, AST, ALP and MDA was found in group of rats fed HFC diet+ sonchus and HFC diet+ turmeric as compared with positive control group. But the highest mean value in erythrocyte-SOD was found in group of rats fed HFC diet+ sonchus and HFC diet+ turmeric as compared with positive control group. Histopathological examination of liver and heart shows that there was a decrease in fat accumulation in liver and heart among group of rats fed experimental dietary plants as compared with positive control group and group of rats fed HFC diet+ turmeric was almost as negative control group.

TO MY FAMILY

List of Abbreviations

AIN-76 American Institute of Nutrition 1976

AIR alcohol insoluble residues

AMD Age-related macular degeneration

bdmc bis- demethoxycurcumin
BHA Butylated hydroxyanisole
BHT Butylated hydroxytoleune

CCl₄ Carbon tetrachloride

CHD Coronary heart disease

CO Q 10 Coenzyme Q 10

CVD Cardiovascular diseases

CY Cytochrome

dmc demethoxycurcumin

DPPH` Diphenyl- 2- picryl hydrazyl

DXA Dual-energy x-ray absorptionmetry

E Eosin

E⁰ Apolipoprotein- E- deficient

ER Ethoxyresorufin

EtOH Ethanol

FFA Free fatty acid

G6PD Glucose-6-phosphate dehydrogenase

GPX Glutathione peroxidase
GR Glutathione reductase

GST Glutathione-S-transferase

HDL High density lipoprotein

HFC High fat and high cholesterol

HPLC High performance liquid chromatography

HX Hematoxylin

IL-2 Interleukine-2IL-4 Interleukine-4IV Iodine value

LDL low density lipoprotein

M. Mycobacterium

MABA Micro plate Alamer blue assay

MDA Malondialdehyde
MR Methoxyresorufin
MW Molecular weight
NAC N-Acetyl cysteine

NADH Nicotinamide adenine Dinucleotide H

NK Natural killer

NSP Non- starch polysaccharides

OVA Oval albumin

PAHs Polycyclic aromatic hydrocarbons

PEITC Phenethyl- isothiocyanates
PITC Phenyl - isothiocyanates

POV Peroxide value PPs Polyphenols

PR Pentoxyresorufin

RNS Rreactive nitrogen species
ROS Reactive oxygen species
ROS Reactive oxygen species

S-ALP Sserum alkaline phosphatase

S-ALT Serum alanine aminotransferase S-AST Serum aspartate aminotransferase

SOD Superoxide dismutase

TBARS Thiobarbituric acid reactive substances

TC Total cholesterol
TCE Trichloroethylene
TCS Thiocarbamates

UFAs Unsaturated fatty acids

VLDL Very low density lipoprotein

WBBA Whole body bone area

WBBMC Whole-body bone mineral content
WBBMD Whole body bone mineral density

LIST OF FIGURES

			Page No
Fig.	1	Effect of the experimental dietary plants on serum total lipids	90
Fig.	2	Effect of the experimental dietary plants on serum triacylglycerols	90
Fig.	3	Effect of the experimental dietary plants on Serum total cholesterol	90
Fig.	4	Effect of the experimental dietary plants on serum VLDL- cholesterol	93
Fig.	5	Effect of the experimental dietary plants on serum LDL- cholesterol	93
Fig.	6	Effect of the experimental dietary plants on serum HDL- cholesterol	93
Fig.	7	Effect of the experimental dietary plants on liver total lipids	96
Fig.	8	Effect of the experimental dietary plants on liver triacylglycerols	96
Fig.	9	Effect of the experimental dietary plants on liver total cholesterol	96
Fig.	10	Effect of the experimental dietary plants on serum - ALT	98
Fig.	11	Effect of the experimental dietary plants on serum - AST	98
Fig.	12	Effect of the experimental dietary plants on serum - ALP	98

Fig.	13	Effect of the experimental dietary plants on serum malondialdehyde (MDA)	101
Fig.	14	Effect of the experimental dietary plants on erythrocyte-superoxide dismutase(SOD)	101
Fig.	15	Effect of the experimental dietary plants(turmeric and ginger) on serum total lipids	104
Fig.	16	Effect of the experimental dietary plants(turmeric and ginger) on serum, triacylglycerols	104
Fig.	17	Effect of the experimental dietary plants(turmeric and ginger) on serum total cholesterol	104
Fig.	18	Effect of the experimental dietary plants (turmeric and ginger) on serum VLDL-cholesterol	107
Fig.	19	Effect of the experimental dietary plants (turmeric and ginger) on serum LDL-cholesterol	107
Fig.	20	Effect of the experimental dietary plants (turmeric and ginger) on serum HDL-cholesterol	107
Fig.	21	Effect of the experimental dietary plants (turmeric and ginger) on liver total lipids	109
Fig.	22	Effect of the experimental dietary plants (turmeric and ginger) on liver triacylglycerols	109

Fig.	23	Effect of the experimental dietary plants (turmeric and ginger) on liver total cholesterol	109
Fig.	24	Effect of the experimental dietary plants (turmeric and ginger) on serum - ALT	112
Fig.	25	Effect of the experimental dietary plants (turmeric and ginger) on serum - AST	112
Fig.	26	Effect of the experimental dietary plants (turmeric and ginger) on serum - ALP	112
Fig.	27	Effect of the experimental dietary plants (turmeric and ginger) on serum malondialdehyde (MDA)	115
Fig.	28	Effect of the experimental dietary plants (turmeric and ginger) on erythrocyte-superoxide dismutase(SOD)	115
Fig.	29	Liver from group 1(Negative control)	117
Fig.	30	Liver from group 2 (Positive control)	118
Fig.	31	Liver from group 3 (HFC diet + Chicory)	119
Fig.	32	Liver from group 4 (HFC diet + Sonchus)	120
Fig.	33	Liver from group 5 (HFC diet + Moringa leaves)	121
Fig.	34	Liver from group 6 (HFC diet + turmeric)	122

Fig.	35	Liver from group 7 (HFC diet + ginger)	123
Fig.	36	Heart from group 1 (Negative control)	124
Fig.	37	Heart from group 2 (Positive control)	125
Fig.	38	Heart from group 3 (HFC diet + Chicory)	126
Fig.	39	Heart from group 4 (HFC diet + Sonchus)	127
Fig.	40	Heart from group 5 (HFC diet + Moringa leaves)	128
Fig.	41	Heart from group 6 (HFC diet + turmeric)	129
Fig.	42	Heart from group 7 (HFC diet + ginger)	130

LIST OF TABLES

			Page No
Table	1	Composition of the standard diet (g/100g diet)	70
Table	2	Composition of high fat and high cholesterol diet (g/100g diet)	71
Table	3	Composition of the experimental diets (g/Kg diet) in the experiment I	74
Table	3\	Composition of the experimental diets (g/Kg diet) in the experiment II	75
Table	4	The activity of ALT (u/l)	81
Table	5	The activity of ALT (u/l)	82
Table	6	Proximate analyses of the experimantal dried plantes (g/100g)	87
Table	7	Effect of the experimental dietary plants on serum total lipids, triacylglycerols and total cholesterol (mean $\pm S.E$)	89
Table	8	Effect of the experimental dietary plants on serumVLDL-,LDL- and HDL- cholesterol (mean ±S.E)	92

Table	9	Effect of the experimental dietary plants on liver total lipids, triacylglycerols and total cholesterol (mean $\pm S.E$)	95
Table	10	Effect of the experimental dietary plants on serum - ALT,AST and ALP (mean $\pm S.E$)	97
Table	11	Effect of the experimental dietary plants on serum malondialdehyde (MDA) and erythrocyte-superoxide dismutase (SOD) (mean \pm S.E)	100
Table	12	Effect of the experimental dietary plants (turmeric or ginger) on serum total lipids, triacylglycerols and total cholesterol (mean ±S.E)	103
Table	13	Effect of the experimental dietary plants (turmeric or ginger) on VLDL-,LDL- and HDL- cholesterol (mean $\pm S.E$)	106
Table	14	Effect of the experimental dietary plants (turmeric or ginger) on liver total lipids, triacylglycerols and total cholesterol (mean $\pm S.E$)	108
Table	15	Effect of the experimental dietary plants (turmeric or ginger) on serum - ALT,AST and ALP (mean \pm S.E)	111
Table	16	Effect of the experimental dietary plants (turmeric or ginger) on serum malondialdehyde (MDA) and erythrocyte-superoxide dismutase(SOD) (mean ±S.E)	114