الله الحجالين

﴿ قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلْمَ الْحَ

صدق الله العظيم سورة البقرة: آية (٣٢)

RADIODENSITOMETRIC EVALUATION OF LOW INTENSITY LASER THERAPY ON THE OSSEOINTEGRATION OF IMMEDIATELY LOADED DENTAL IMPLANTS UNDER THE INFLUENCE OF CALCIUM AND VITAMIN C

Thesis

Submitted to the Faculty of Oral and Dental Medicine, Cairo University in partial Fulfillment of Requirement for the Master Degree in Oral Surgery

$\mathbf{B}\mathbf{y}$

Ahmed Mohamed Abd EL Kader

B.D.S. (MUST University, 2003)

Faculty of Oral and Dental Medicine

Cairo University

2010

Supervisors

Prof. Dr. Tarek Abass Hasan

Professor of Oral & Maxillofacial Surgery, Oral Surgery Department, Faculty of Oral & Dental Medicine, Cairo University.

Dr. Dalia Abd EL Khalek Radwan

Lecture of Oral & Maxillofacial Surgery, Oral Surgery Department, Faculty of Oral & Dental Medicine, Cairo University.

DEDICAION

This work is dedicated to my dear parents, my grateful helpful wife and my father & mother in-laws due to there durable love, care, support and guidance throughout my life. I owe all of them a great debt that can only be paid back, by being what they desired me to be.

تحت إشراف

الاستاذ الدكتور/ طارق عباس حسن

أستاذ جراحة الفم والوجه والفكين كلية طب الفم والأسنان جامعة القاهرة

الدكتورة/ داليا عبد الخالق رضوان

مدرس جراحة الفم والوجه والفكين كلية طب الفم والأسنان جامعة القاهرة

<u>ACKNOWLEDGEMENT</u>

First of all, I must thank *Allah* who granted me the ability to perform this study.

I wish to express my sincerest appreciation to *Prof. Dr. Moshira Salah El.Din*, Professor of Oral Medicine, Periodontolgy, Diagnosis & Radiology Faculty of Oral & Dental Medicine, Cairo University, for her hard efforts & the precious time she gave for guiding me and her creative remarks that helped me to accomplish this work in the best possible form.

Also, I would like to express my deep appreciation and gratitude to *Prof. Dr. Tarek Abass*, Professor of Maxillofacial & Oral Surgery Faculty of Oral & Dental Medicine, Cairo University, for his efforts and valuable scientific comments that have contributed greatly to bring this thesis to its final form.

I would like to express my deepest thanks and appreciations to *Prof. Dr. Hasan Sadek* Chief of Dental Officer Armed Forces, Professor of Oral & Maxillofacial surgery in the Military Medical Academy for his continuous help, encouragement, kind advices and valuable suggestions throughout this study.

I am extremely grateful to *Dr. Dalia Radwan*, Lecture of Maxillofacial and Oral Medicine, Faculty of Oral & Dental Medicine, Cairo University for her kind help and continuous guidance throughout this study.

I would like to express my deep thanks to *Dr. Walid El Sisi* my surgeon senior and my collieges in Maadi armed hospital for their great help and support during the entire study.

LIST OF CONTENTS

<u> </u>	age.
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
3- AIM OF THE STUDY	.30
4- PATIENTS AND METHODS	31
5- RESULTS	.54
6- DISCUSSION	63
7- SUMMARY AND CONCLUSION	70
8- REFFERENCES	.73
9- ARABIC SUMMARY	91

LIST OF FIGUERS

Fig (1): Pre – operative digital orthopanograph	43
Fig (2): Revois implant kit system	43
Fig (3): Basic surgical implant kit that shows: bone reamers, bone	
taps, depth gauge, screw drivers, hexagonal ratchet and the	
seating instruments	44
Fig (4): Flap design and incision	44
Fig (5): Flap elevation	45
Fig (6): Penetrating the crestal cortical plate using a flame shaped	
pilot drill	45
Fig (7): Bone drilling using a twist drill	46
Fig (8): Preparation of the implant bed using a bone reamer	46
Fig (9): The implant in its sterile inner vial	47
Fig (10): The hexagonal ratchet while seating the implant into the	
prepared bed	47
Fig (11): The screw driver while placing the screw driver	48
Fig (12): The healing screw is tightened into the implant	48
Fig (13): The flap repositioned back and sutured	49
Fig (14): The gallium arsenide laser device	49
Fig (15): Laser application.	51
Fig (16): Post-operative digital orthopanograph	50
Fig (17): 45 days post-operative digital orthopanograph	50
Fig (18): 4 months post-operative digital orthopanograph	51
Fig (18): The implant was exposed two weeks postoperatively	51
Fig (19): IDRISI Kilimanjaro software assessing density of the bone	
surrounding the implant by quantifying the image on 256	
gray scales and dividing the area surrounding the implant in	
two zones	52

Fig (20): The implant was exposed two weeks postoperatively	52
Fig (21): The abutment was loaded on the implant two weeks	
postoperatively	53
Fig (22): The final restoration was cemented	53
Fig (23): Line chart represent the relation of mean bone density on	
time for both zones in case of Control group	57
Fig (24): Line chart represent the relation of mean bone density on	
time for both zones in case of Laser group	57
Fig (25): Line chart represent the relation of mean bone density on	
time for both zones and both group	58
Fig (26): The Histogram Shows the mean area bone density of both	
groups at different periods	62

LIST OF TABLES

Table (1): Illustrates the data of the non-laser,	
conventional therapy group in terms of age,	
implant size, site as well as the cause of	
extraction	33
Table (2): Illustrates the data of the laser therapy group	
in terms of age, implant size, site as well as	
the cause of extraction	34
Table (3): Mean, Standard Deviation and Standard Error	
of Bone Density for the two groups under	
study at different zones and periods	54
Table (4): The results show the significance in bone	<i>J</i> .
densities between different periods for	
control group zone 1 using the T-test	55
Table (5): The results show the significance in bone	33
densities between different periods for	
control group zone 2 using the T-test	56
Table (6): The results show the significance in bone	50
densities between different periods for laser	
group zone 1 using the T-test	56
Table (7): The results show the significance in bone	50
densities between different periods for laser	
•	56
group zone 2 using the T-test	30
Table(8): The results show the significance in bone	
densities between zones for control group	50
using the T-test	59
Table(9): The results show the significance in bone	
densities between zones for laser group using	5 0
the T-test	59
Table(10): The results show the significance in bone	
densities between groups in the first zone	6 0
using the T-test	60
Table(11): The results show the significance in bone	
densities between groups in the second zone	<i>-</i> ^
using the T-test	60

Table(12): The significance in an	ea bone densities within
the control group	due to time when
applaying the T-test	61
Table(13): The significance in an	ea bone densities within
the laser group due	to time when applaying
the T-test	61
Table(14): The significance is	n area bone densities
between the two gro	ups at different period of
time when applaying	the T-test 61

:

INTRODUCTION

INTRODUCTION

Dental implants are one of the most important kinds of the prosthetic dental appliances. Therefore, dental implants become one of the fastest growing dental treatment nowadays. They are used as replacement for a single tooth loss, to support prosthesis either partial or complete dentures, or to support a bridge either to a natural tooth or to another implant⁽¹⁾. Poor bone quality and insufficient quantity of bone are from the reasons that lead to compression of the intended implant site⁽²⁾.

In implant dentistry, Osseointegration is becoming the most accepted phenomenon for success in dental implants procedures. It has been recognized recently that impaired healing, infection and overload are associated with other devices that lead to failure of dental implants procedures⁽³⁾.

Osseointegration refers to microscopic evidence of direct contact of bone implant, but is by no means limited to titanium two-stage implants. A direct bone interface or contact can be observed with ceramic, other metal implants and one stage implants⁽⁴⁾.

Osseointegration has provided treatment opportunities which have revolutionized the rehabilitation of body part losses such as edentulizm. Traditional guide lines suggested that 2-3 months of alveolar ridge remodeling following tooth extraction and an additional 3-6 months of load-free healing that known as two-stage surgical or conventional approach after implant insertion were needed for osseointegration to take place. The extended treatment period and the need for a removable prosthesis during the healing phase may be inconvenient to certain patients⁽⁵⁻⁶⁾.

Changing the world of implant dentistry can be done if we combine the concepts of biomimetics and dental implants that would be a solution due to the absence of the biomimetic implant system commercially. Basically, because of the need to ensure the absence of undesired host tissue reaction, patients with different situations (as poor bone, quantity or quality) will benefit from an improved predictable treatment modality, short initial healing times and better long-term, performance of the dental implant. To ensure progress in this rewarding field of dentistry achieving a lot of future improvements in implant design as well as the implant geometry, bioactivity, chemistry and all the interactions between them⁽²⁾.

Adequate dietary calcium is essential for the growth and development for normal skeleton, and essential for normal bone structure and function. Calcium supplementation increase bone mass in children and adolescence and reduce age associated bone less⁽⁷⁾.

Several studies found that increased dietary vitamin C intake favored the adult bone health, increased bone mass density (BMD), reduced risk of fracture and free radical formation, which was involved in bone resorption in vitro and in rodents. Furthermore, it enhanced TGF- β to stimulate osteoblast differentiation and hence bone formation. It also neutralized the increased oxidative stress associated with most of the risk factors for osteoporosis (smoking, hypertension and diabetes mellitus) which affected the human bone negatively⁽⁷⁾.

The effect of Low Intensity Laser Therapy (LILT) on bone regeneration has become a focus of recent research. LILT is based on biostimulation of the tissues with more chromatic light. Various biostimulatory effects have been reported on wound healing⁽⁸⁾ and collagen synthesis⁽⁹⁾. With respect to bone, LILT has been shown to modulate inflammation, accelerate cell proliferation⁽¹⁰⁾. LILT resulted in significant increase in cellular proliferation, bone nodule formation and alkaline phosphatase activity⁽¹¹⁾.

This study conducted to evaluate the effect of LILT on the osseointegration of immediate loading dental implants by radiodensitometric assessment under the influence of calcium and vitamin C.