Audiological Profile of Tinnitus Patients

Thesis Submitted for partial fulfillment of MD Degree in Audiology

By Hanan Wafa`a El Sayed M.B.B.Ch., M.Sc.

Supervised by: Prof. Dr./ Mohamed Tarek Abed El Aziz Ghanoum

Professor of Audiology
Faculty of Medicine – Cairo University

Prof. Dr./ Moustafa El- Khousht

Professor of Audiology
Faculty of Medicine – Cairo University

Prof. Dr./ Shereen Mohamed El-Abd

Professor of Audiology
Faculty of Medicine – Cairo University

Dr./ Amira Maged El Shennawy

Assistant Professor of Audiology Faculty of Medicine – Cairo University

Faculty of Medicine - Cairo University 2010

Abstract

The objective of this work is to determine if there are any audiological findings in tinnitus patients or any audiological difference in patients with different levels of annoyance from tinnitus. Methods: A total number of 50 adult tinnitus patients were examined. Equipment included two channel audiometer, immittancemetery,Otoacustic emission analyzer. All subjects were subjected to history taking, THI, clinical examination, basic audiological assessment; tinnitus matching and otoacoustic emission. There were a reduced TEOAE and DPOAE levels in patients with normal hearing compared to control group.

Key Words:

Tinnitus- Otoacoustic emission-THI- Tinnitus matching- TEOAE- DPOAE.

Acknowledgement

First and foremost, praise and thanks must be to ALLAH who guides me throughout life.

I would like to express my deepest gratitude and thanks to Prof. Dr. Mohamed Tarek Abed El Aziz Ghanoum, Professor of Audiology, Faculty of Medicine — Cairo University for his kind continuous encouragement and great support throughout the work. It was a great honor to work under his meticulous supervision.

Also I am really deeply grateful to Prof. Dr. Moustafa El-Khousht, Professor of Audiology, Faculty of Medicine — Cairo University for his great help, valuable time, careful supervision and continuous advices and his efforts that made this work come to light.

I am also greatly indebted to Prof. Dr. Shereen Mohamed El -Abd. Professor of Audiology, Faculty of Medicine - Cairo University for her careful and great support. She did not spare any effort in guiding me towards the best and her valuable advices.

I am really thankful to Dr. Amira Maged El Shennawy.

Assistant Professor of Audiology, Faculty of Medicine – Cairo

University for her part in exhibiting this work to light.

Table of Contents

Introduction and Rationale	1
Aim of the Work	4
Tinnitus	5
I. Prevalence of subjective tinnitus	7
II. Phathophysiology of Tinnitus:	9
III. Development of tinnitus:	24
IV. Evaluation of tinnitus patients	27
V. Management of tinnitus patients	36
Otoacoustic Emissions	45
I. Mechanisms of OAE Generation:	46
II. Classification:	49
III. Clinical applications of OAEs:	61
Otoacoustic emissions and Tinnitus	65
I. Linking SOAEs and Tinnitus:	67
II. Transient evoked emissions and tinnitus	75
III. Distortion product otoacoustic emissions and tinnitus	77
Material and Methods	80
I. Subjects:	80
II. Methods:	82
III. Statistical Analysis:	89
Results	91
Discussion	118
Conclusions	132
Recommendations	133
Summary	134
References	135
Appendix	160

List of Tables

Table	Page
Table (1): Causes of subjective and objective tinnitus.	7
Table (2): Tinnitus and significant medical history	31
Table (3): Nine widely used tinnitus questionnaire.	33
Table (4): Mean, Standard deviation and range of the age among the study	91
groups.	
Table (5): Gender distribution among the study groups	92
Table (6):	96
Table (7):	97
Table (8):	97
Table (9): Distribution of tonal verses noise-like tinnitus among the study	98
group	
Table (10): Comparison of frequency of matched tinnitus (Hz) (tonal and	98
combined like tinnitus) between both groups	
Table (11): Comparison of frequency of matched tinnitus (Hz) (noise-like and	99
combined tinnitus) between both groups.	
Table (12): Distribution of the TLM in (dB sensation level of tinnitus) for tonal	99
like tinnitus among the study groups.	
Table (13): Distribution of TLM for noise like tinnitus between both groups	100
Table (14): Distribution of the degree of handicap among the groups under	101
study.	
Table (15): Mean standard deviation and range of emotional [E], functional [F]	102
and catastrophic [C] subscales score between the study groups.	
Table (16): Distribution of different variables in different degrees of handicap	103
and their correlation coefficient results	
Table (17): Correlation coefficient results of the questionnaire subscales with	104
each other for group 1.	
Table (18): Correlation coefficient results of the questionnaire subscales with	104

Table	Page
each other for group 2	
Table (19): Mean and S.D of the emotional, functional and catastrophic	105
subscales in stationary and intermittent tinnitus in the study groups	
Table (20): The effect of the course of the tinnitus on the tinnitus handicap	106
inventory (THI) subscales in both groups	
Table (21): distribution of the laterality of tinnitus among the study groups	106
Table (22): Mean and S.D of the emotional, functional and catastrophic	107
subscales in unilateral and bilateral tinnitus in the study groups	
Table (23): The effect of the laterality of the tinnitus on the THI subscales in	107
both groups	
Table (24): Correlation between handicap and different variables	108
Table (25): Correlation coefficient results of questionnaire subscales with the	108
age and duration of tinnitus in study groups.	
Table (26): Number and percentage of ears with SOAEs in control and study	109
group.	
Table (27): Number and percentage between tinnitus matched frequency and	109
SOAEs	
Table (28): Comparison between TEOAE overall reproducibility % in the	110
control, group1 and group 2	
Table (29): Comparison between TEOAE S/N in the control, group1 and	110
group 2.	
Table (30): It shows the percentage of normal and altered TEOAE tests	111
according to S/N ratio and reproducibility	
Table (31): Percentage of normal and altered TEOAE tests according to the	112
frequencies evaluated in each group.	
Table (32): Mean, standard deviation (SD), F and P value of DPOAE	112
amplitudes at different frequencies for control and study groups.	
Table (33): Mean standard deviation (SD), F and P value of DPOAE S/N at	113
different frequencies for control and study groups.	

Table	Page
Table (34): Percentage of normal and altered DPOAE tests according to	114
amplitude and S/N ratio.	
Table (35): Percentage of normal and altered DPOAE tests according to	115
amplitude and S/N ratio in each frequency tested	
Table (36): Shows correlation between TEOAE and DPOAE results in Group1.	116
Table (37): Shows correlation between TEOAE and DPOAE results in Group2.	117
Table (38): Shows correlation between altered TEOAE and DPOAE results in	117
Control group:	

List of Figures

Figure	Page
Figure (1): Neural Sites That Mediate Tinnitus.	10
Figure (2): Reaction process of the CNS after an aggression in the peripheral	18
sensory organ.	
Figure (3): Process of cochlear dysafferentation by peripheral lesion and	19
response at the level of the auditory cortex.	
Figure (4): Development of connections yielding tinnitus-induced negative	25
reactions.	
Figure (5): An algorithm for the Evaluation of Patients with Tinnitus.	29
Figure (6): Mechanism-based taxonomy for mammalian OAEs.	46
Figure (7): Spontaneous otoacoustic emission in a normal subject with multiple	50
frequency component spectrum.	
Figure (8): Sample of (A) a clear "pass" TEOAEs response and (B) a clear	52
"refer" in.	
Figure (9): A strong TEOAE response from a new-born infant.	53
Figure (10): A TEOAE probe containing miniature sound source and	54
microphone transducers.	
Figure (11): Components of DPOAE.	56
Figure (12): Distortion product OAE recording requires the application of two	57
pure tone stimuli.	
Figure (13): The SOAEs for one subject.	71
Figure (14): Average level of the subject's SOAE.	72
Figure (15): Mean of the age between the two study groups	91
Figure (16): Gender distribution among the study groups	92
Figure (17): Distribution of worsening factors of the tinnitus among the study	93
groups.	

Figure	Page
Figure (18): Distribution of reliving factors of the tinnitus among the study	94
groups	
Figure (19): Distribution of the audiogram configuration among the study	95
groups.	
Figure (20): Shows PTA of the groups understudy	96
Figure (21): Distribution of normal and altered TEOAE response among the	111
study group.	
Figure (22): Mean values and standard deviations of the amplitude of the	113
DPOAE (in dB SPL) as a function of the frequency of the f2 primary tone (in	
Hz).	
Figure (23): Mean baseline of DPOAE level of the study and control groups.	114
Figure (24): Distribution of normal and altered DPOAE response in study	115
group.	

List of Abbreviation

Aberrant electrical activity	(AEA)
Acoustic distortion product	(ADP)
Auditory brainstem response	(ABR)
Central nervous system	(CNS)
Cochlear microphonics	(CM)
Distortion product ototacoustic mission	(DPOAE)
Distortion products	(DPs)
Dorsal cochlear nucleus	(DCN)
Electrocochleography	(EchoG)
Electronystagmography	(ENG)
Functional magnetic resonance imaging	(fMRI)
Gamma aminobutryic acid	(GABA)
Inferior colliculus	(IC)
Inner hair cells	(IHC)
N-methyl-D-aspartic acid receptors-type.	(NMDA)

Otoacoustic emission	(OAE)
Outer hair cells	(OHC)
Pitch match Frequency	(PMF)
Pure tone audiometry.	(PTA)
Spontaneous otoacoustic emission	(SOAE)
Stimulus Frequency otoacoustic emission	(SFOAE)
Suppression tuning curves	(STC)
Synchronized Spontaneous otoacoustic	(SSOAE)
Tinnitus handicap Inventory	(THI)
Tinnitus loudness match	(TLM)
Tinnitus retraining therapy	(TRT)
Transient evoked otoacoustic emission	(TEOAE)
Ventral cochlear nucleus	(VCN)

INTRODUCTION AND RATIONALE

Introduction and Rationale

Tinnitus which is a sound perception that occurs in the absence of external stimuli represents a frequent disorder that occurs with different severity (Moller, 2007).

Epidemiological studies showed that about one third of the population experiences tinnitus at least once in their life and about 1-5% develop serious psychosocial complications (*Pilgramm et al.*, 1999).

The tinnitus prevalence increases to 70-85% of the hearing-impaired population. The causes of tinnitus are multiple. Tinnitus can be due to inner ear dysfunction, such as that associated with sudden hearing loss or acoustic trauma, or part of otological and neurological diseases such as Meniere's disease, conductive hearing loss, acoustic neuroma or severe head injury. In addition, there are idiopathic forms of tinnitus with no identifiable etiological factors despite appropriate medical examination (Hiller and Goebel, 2007).

There are many forms of tinnitus; it can be just noticeable, an annoyance or it can reduce the quality of life.

Patients usually attribute tinnitus to a negative change in their life quality. They complain from irritability, concentration difficulties, sleep disorders, health problems, and difficulty in speech discrimination. Tinnitus may be a source of intense anxiety leading some times to depression, and in some severe cases to suicide (*Davis*, 1995).

The subjective assessment of tinnitus intensity that is, whether the sound is considered high, medium, or low has been shown to be related to the beliefs of the patient concerning the nature of the symptom and to the presence of anxiety, depression, or other emotional conditions of the patient at the time of onset of tinnitus. These factors might explain the difference between "annoying" and "tolerable" tinnitus. Patients who think that, their tinnitus is the first symptom of a psychiatric disease or a brain tumor assess the intensity of tinnitus as more loud. On the contrary patients who perceive their tinnitus as an environmental noise of benign etiology are more likely to assess the intensity as lower and characterize the symptom as tolerable (*Hazell*, 1995).

There are no objective tests that can measure subjective tinnitus, and the only person who can assess the tinnitus is the person who has the tinnitus (Moller, 2007).

Assessment of tinnitus for clinical or research purposes is a challenging task because of the subjective nature of tinnitus (*Meikle and Griest*, 2002). Diagnostic audiological assessment is a critical step in management of tinnitus