

SYMPATHETIC TRIPPING IN DISTRIBUTION NETWORKS, CAUSES, ANALYSIS, AND SOLUTION

By

Hossam El-din Mohamed Ali Sabra

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

SYMPATHETIC TRIPPING IN DISTRIBUTION NETWORKS, CAUSES, ANALYSIS, AND SOLUTION

By

Hossam El-din Mohamed Ali Sabra

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Mahmoud Ibrahim Gilany

Electrical Power and Machines
Department
Faculty of Engineering,
Cairo University

Prof. Dr. Doaa Khalil Ibrahim

Electrical Power and Machines
Department
Faculty of Engineering,
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2017

SYMPATHETIC TRIPPING IN DISTRIBUTION NETWORKS, CAUSES, ANALYSIS, AND SOLUTION

By

Hossam El-din Mohamed Ali Sabra

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the

Examining Committee:

Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Doaa Khalil Ibrahim

(Member)

Prof. Dr. Ahdab Mohamed Kamel El-Morshedy

Internal Examiner

Dr. Bahaa El-din Hassan Ibrahim Soudy

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2017

Engineer: Hossam El-din Mohamed Ali Sabra

Date of Birth: 23 / 07 / 1987 Nationality: Egyptian

E-mail: sabra.hosam@yahoo.com

Phone.: +201007959203

Address: Fysal – Giza – Egypt

Registration Date: 01 / 10 / 2014

Awarding Date: / /

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Doaa Khalil Ibrahim

Examiners: Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Doaa Khalil Ibrahim

Prof. Dr. Ahdab Mohamed Kamel El-Morshedy

Dr. Bahaa El-din Hassan Ibrahim Soudy

Title of Thesis:

Sympathetic Tripping in Distribution Networks, Causes, Analysis and Solution

Key Words:

Network Protection, Custom Logic Scheme, Distribution Networks, Earth Faults, False Trip, Sympathetic Trip.

Summary:

In this thesis, problems that affecting the proper operation of the earth fault protection elements in distribution network are reported. One of these problems is the unnecessary sympathetic tripping phenomena to the healthy feeders during or after fault occurrence on an adjacent feeder. A relay-based solution is proposed and implemented for MV distribution network to overcome the sympathetic tripping phenomena. Two proposed custom logic schemes are applied, one for outgoing relays and another one for incomerrelay. The proposed solution is based on extensive analysing of actual recorded cases of sympathetic tripping phenomena that are reported from a 22 kV real distribution network located in Giza, Egypt.

The proposed custom logic scheme is extensively examined on the simulated network using ATP Program. Symmetrical and unsymmetrical faults are simulated to present different types of the sympathetic tripping phenomena. The proposed scheme is modelled using MODELS language in ATP to evaluate its capability to overcome the false tripping. The final results demonstrate the suitability of the proposed solution in avoiding the unnecessary false sympathetic tripping of both incoming and outgoing feeders on distribution systems.

ACKNOWLEDGMENTS

First of all, thanks to Allah who supported and strengthened me in all of my life and in completing my studies for the Master of Science (M.Sc.) degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Mahmoud Gilany and Prof. Dr. Doaa Khalil Ibrahim, Electrical Power and Machines Department, Faculty of Engineering, Cairo University for their faithful supervision, enormous efforts, and their great patience during the period of the research.

Finally, I would like to thank my family for their great inspiration, kind support, and continuous encouragement.

TABLE OF CONTENTS

AC	NOWLEDGMENTS	iv
TAl	LE OF CONTENTS	v
LIS	OF TABLES	ix
LIS	OF FIGURES	X
LIS	OF SYMBOLS AND ABBREVIATIONS	XV
ABS	ΓRACT	xviii
CH	PTER (1): INTRODUCTION	1
1.1.	Medium Voltage Distribution Networks	1
1.2.	Protection System in Distribution Network	2
	.2.1. Earth fault protection scheme of distribution parlifficulties	
1.3.	Sympathetic Tripping in Distribution Networks	4
1.4.	An overview of sympathetic trips causes	5
1.5.	Problem Statement	7
1.6.	Thesis Objectives	7
1.7.	Thesis Organization	8
	PTER (2): LITERATURE REVIEW ON SYMPATHETIC PPING IN DISTRIBUTION NETWORKS	9
	: Description of Sympathetic Tripping Scenarios	
2.1.	Unnecessary Sympathetic Tripping Scenarios	10
	2.1.1 Unnecessary trip of outgoing feeder as a result of uroltage sag condition	
	2.1.2. Unnecessary trip of outgoing feeder as a result of stall condition	n12
	2.1.3. Unnecessary trip of outgoing feeder as a result of lischarge current	
	2.1.4. Unnecessary trip of incoming feeder as a result of ecovery starting current	
	2.1.5. Unnecessary trip of as a result of mutual coupling	15
	2.1.6. Engaged tripping case	16
	2: Solutions of Sympathetic Tripping Phenomena as Reputure	
2.2.	Solutions implemented by the Protection Sector	17
	2.2.1. Solutions based on using simple overcurrent relays	17
	2.2.1.1. By making the overcurrent protection less sensitive	18

	2.2.1.2. By reducing the clearing time of external faults	18
	2.2.1.3. By increasing the time delay of the earth fault element	18
sup	2.2.1.4. By applying additional protection logic for the feaplying significant induction motor loads	eeders 18
2.2.2.	Solutions based on using current and voltage signals	19
	2.2.2.1. Using of under voltage detector	19
	2.2.2.2. Using directional elements of negative seq	uence
curi	rent detection	19
	2.2.2.3. Multi settings groups	20
2.2.3. distrib	A Solution based on using IEC 61850 protocol-based bution protection	
2.3. Solu	tions Implemented by Power Sector	21
2.3.1.	Solutions based on reducing the voltage sag	22
imp	2.3.1.1. Fault level reduction by using neutral groupedance 22	nding
imp	2.3.1.2. Reducing voltage sag by decreasing the power spedance 22	ystem
	Installing under voltage relay for motors contactors mers	-
2.4. Reco	ommendations for Network Operation	23
2.4.1.	Reducing individual feeder currents as much as feasible	23
2.4.2. fault u	Balancing each feeder load as much as possible to reduce unbalance current	_
СНАРТЕ	ER (3): SYMPATHETIC TRIPPING IN EGYPTIAN	
	BUTION NETWORK	24
3.1. Intro	oduction	24
3.2. Typi	ical Egyptian Distribution Network	24
3.3. Typi	ical Distributor Components	25
3.3.1.	Panel Components	25
	3.3.1.1. Incoming feeders	26
	3.3.1.2. Outgoing feeders	26
	3.3.1.3. Bus coupler and bus riser	26
	3.3.1.4. Potential and current transformers	26
	3.3.1.5. Protection and measurement devices	27
	3.3.1.6. Charger and batteries	27
3.3.2.	Protection setting adjustment	27
3.3.3.	Needs of Directional Relays	29
3.4. Reco	orded Incoming and Outgoing Sympathetic Tripping Scenarios	30

Scenario No. 1: Unnecessary trip of outgoing feeder as a result unbalanced voltage sag condition	t of 31
Scenario No. 2: Unnecessary trip of outgoing feeder as a result stall condition	t of 33
Scenario No. 3: Unnecessary trip of outgoing feeder as a result capacitive discharge current	t of 34
Scenario No. 4: Unnecessary trip of incomer-feeders as a re of voltage recovery starting current condition	sult 35
3.4.1. Other Practical Sympathetic Tripping Scenarios Not Covered Published Research Studies	•
Scenario No. 5: Unnecessary trip for parallel incoming-feed under normal condition	ders 35
Scenario No. 6: Unnecessary trip of parallel incomer-feeders to mutual coupling	due 37
Resonance between cable capacitance and loads inductance	38
3.5. Scenario No.7: Engaged Tripping	39
CHAPTER (4): SYSTEM MODELING USING ATP/EMTP PROGRAM	М
	41
4.1. Introduction	
Part-1: Modeling the Different Elements in the Network Under-Study	
4.2. Modeling of the System Under-Study	
4.2.1. Equivalent system modeling	
4.2.2. Transformers modeling	
4.2.3. Cables modeling	
4.2.4. Mutual coupling modeling	45
4.2.5. Parallel incomer-feeders modeling	46
4.2.6. Loads modeling	47
Part-2: Evaluation of the Modeled Network Under-Study	49
4.3. Analysis and Modeling of Simulated Events	49
4.3.1. Applying real unsymmetrical fault on feeder No. (11), DP (1)	49
4.3.2. Unbalanced voltage sag condition on feeder No. (3), DP (2)	51
4.4. Evaluation of the Simulated Sympathetic Tripping Scenarios	52
4.5. Modeling of the Proposed Custom Logic Scheme	53
4.5.1. MODELS simulation language in ATP	54
CHAPTER (5): Proposed Custom Logic Scheme	56
Part-1: Description of the Proposed Custom Logic Scheme	57
5.1. Full Description of the Proposed Custom Logic Scheme	57

	5.1.1.	For outg	oing feeders	58
	5.1.2.	For inco	ming feeders	59
Part	:-2: Eval	uation of	the Proposed Custom Logic Scheme	61
	5.2.	Evaluati	on of the Proposed Custom Logic Scheme	61
	5.2.1.	For unsy	mmetrical real fault case	61
		5.2.1.1.	Examining a real unsymmetrical fault case	61
		5.2.1.2.	Examining of voltage sag condition scenario	62
		5.2.1.3.	Examining of stall condition scenario	63
		5.2.1.4.	Examining of capacitive discharge current scenario	65
	recov	5.2.1.5. very starti	Examining of unnecessary trip caused by ng current	voltage 66
		5.2.1.6.	Examining of mutual coupling condition scenario	68
	5.2.2.	For sym	metrical real fault case	70
		5.2.2.1.	Examining a real symmetrical fault case	70
		5.2.2.2.	Examining of voltage sag condition scenario	71
		5.2.2.3.	Examining of stall condition scenario	72
		5.2.2.4.	Examining of capacitive discharge current scenario	73
		5.2.2.5.	Examining of voltage recovery starting current scenario	74
		5.2.2.6.	Examining of mutual coupling condition scenario	75
	5.2.3.	Examini	ng of circulating current during normal loading scenario.	76
CH	APTEF	R (6): CO	NCLUSIONS AND FUTURE WORK	79
6.1.	Concl	usion		79
6.2.	Main	Features o	of the Proposed Scheme	80
6.3.	Sugge	estions for	Future Work	80
REI	FEREN	ICES		81
PUI	BLISH	ED WOI	RK	86

LIST OF TABLES

Table	3-1:	Protection	n setti	ngs	of	outgo	ing	feed	ders	of	substation
	trans	sformer		•••••	•••••	•••••	• • • • • • •	•••••	•••••		28
Table	3-2:	Protection	setting	s of	inc	oming	fee	ders	of	the	distribution
	pane	1			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••		28
Table	3-3:	Protection	setting	s of	ou	tgoing	fee	ders	of	the	distribution
	pane	·1				•••••	• • • • • • • • • • • • • • • • • • • •		••••		29
Table 4	4-1: C	alculated va	lues for	trans	forn	ners T1	and	T2	•••••	•••••	44
Table 4	4-2: C	able parame	ters req	uired	for l	LCC m	odel	•••••	•••••	•••••	45
Table 4	4-5: C	ables resisti	vity req	uired	for l	LCC m	odel		••••		47
Table	4-6:	Parameters	of 1	00	HP	induct	ion	moto	or i	using	(UMIND)
	mod	el				•••••					48

LIST OF FIGURES

Figure	1-1: General view of electrical power network including
	distribution system
Figure	-2: Protection scheme of a typical distribution panel
Figure	-3: Measuring the residual current using three CTs
Figure	1-4: Single line diagram for a part of typical MV distribution
	network
Figure	2-1: SLG fault has occurred in one of outgoing radials feede
	(feeder No. 1)
Figure 2	-2: Voltage sag caused by SLG fault on feeder No. 1
Figure	2-3: Sympathetic tripping case to feeders No. (1, 4) caused by
	group of single phase induction motors
Figure	2-4: Sympathetic tripping of feeders No. (1 and 2) as a result of
	capacitive discharge current caused by a ground fault or
	feeder No. (3)
Figure	2-5: Mutual coupling between three lines located in the same pole
	structure
Figure	2-6: Directional element of negative sequence current on radia
	feeders
Figure	2-7: GOOSE messages flow from each PIED and connection
	WAN between substations
Figure	2-8: Current limiting impedance connected to the secondary
	winding of 66/11 kV substation transformer
Figure	3-1: Single line diagram of Egyptian 22 kV distribution network
	in Cairo zone
Figure 3	-2: Picture of typical distribution panel 22 kV 20
Figure	3-3: The operation of the directional relay for the paralle
	incoming feeders
Figure 3	-4: A typical 22-kV electrical distribution system network 3

Figure 3-5:	Fault recorders for DLG fault occurrence on feeder No. (11),
	DP (1)
Figure 3-6:	Fault records for unbalanced voltage following a real fault on
	feeder No. (11), DP (1)
Figure 3-7:	The resulted unbalanced currents in the healthy feeder No.
	(14), DP (1)
Figure 3-8:	The unbalanced currents in healthy outgoing feeder No. (1),
	DP (2) as response to a real DLG fault on adjacent feeder
	No. (2), DP (2)
Figure 3-9:	Unbalanced currents in healthy outgoing feeder No. (14), DP
	(1) as response to a real SLG fault on an adjacent feeder
	No. (12), DP (1)
Figure 3-10): Fault recorder for feeder No. (5) under zero sequence
	circulating current during normal loading
Figure 3-11	: Fault recorders for a healthy feeder No. (5), DP (1) affected
	by mutual coupling current of a faulty feeder
Figure 3-12	: Fault recorders for feeder No. (4), DP (1) for single line to
	ground fault created by the increased voltage due to fault
	on feeder No. (1), DP (1)
Figure 4-1	: Single line diagram of a part of Egyptian distribution
	network41
Figure 4-2:	ATP-Draw model of the distribution network under study 42
	: Single core armored 22kV (XLPE) Stranded aluminum
C	conductor44
Figure 4-4:	General view of the two incoming cables that are lying in the
	same trench
Figure 4-5:	A-B-G fault current on outgoing feeder No. (11), DP (1)
	Voltage sag on the two faulty phases (A and B) caused by A-
	B-G fault on feeder No. (11), DP (1)
Figure 4-7:	Unbalanced 3-phases currents on the outgoing healthy feeder
- 15010 1 /.	No. (3). DP (2)

Figure 4-	8: Residual current on the outgoing healthy feeder No. (3), DF
	(2) 52
Figure 4-	9: Comparison between real reported record and simulated case
	of unbalanced voltage sag scenario53
Figure 4-1	10: ATP MODELS of proposed outgoing protection relay 55
Figure 4-1	11: ATP MODELS of proposed incoming protection relay 55
Figure 5-	-1: Single line diagram of typical 22 kV Egyptian distribution
	system
Figure 5-	2: Schematic logic diagram for outgoing feeders (Scenarios 1, 2
	and 3)58
Figure 5-	-3: Schematic logic diagram for incoming feeders (Scenarios 4.
	5and 6)60
Figure 5	-4: Simulated data on the faulty feeder No. (11), DP (1) for
	double lines to ground fault
Figure 5-	5: The response of the conventional and proposed relays to the
	real double lines to ground fault
Figure 5-	6: Simulated data on the healthy feeder No. (3), DP (2) that is
	exposed to voltage sag condition63
Figure 5	-7: The response of the conventional and proposed relays to
	voltage sag condition on healthy feeder No. (3), DP (2) 63
Figure 5-	8: Simulated data on the healthy feeder No. (1), DP (2) that is
	exposed to stall condition64
Figure 5	-9: The response of the conventional and proposed relays to
	stalled motors condition on healthy feeder No. (1), DP (2) 64
Figure 5-	10: Simulated data on the healthy feeder No. (12), DP (1) that
	is exposed to capacitive discharge current
Figure 5	-11: The response of the conventional and proposed relays to
	capacitive discharge current on healthy feeder No. (12), DF
	(1)66
Figure 5-	12: Simulated data on the healthy feeder No. (1), DP (2) that is
	exposed to voltage recovery starting current condition

Figure 5-13: The response of the conventional and proposed relays to
voltage recovery starting current condition on healthy
feeder No. (5), DP (2)
Figure 5-14: Simulated data on the healthy feeder No. (6), DP (1) that is
exposed to mutual coupling condition 69
Figure 5-15: The response of the conventional and proposed relays to
mutual coupling condition on healthy feeder No. (6), DF
(1)69
Figure 5-16: 3-phases to ground fault on feeder No. (13), DP (1)
Figure 5-17: Voltage sag on the 3-phases caused by LLL-G fault or
feeder No. (13), DP (1)
Figure 5-18: Simulated data on the faulty feeder No. (13), DP (1) for 3-
L-G fault71
Figure 5-19: The response of the conventional and proposed relays to the
real double lines to ground fault71
Figure 5-20: Simulated data on the healthy feeder No. (3), DP (2) that is
exposed to voltage sag condition
Figure 5-21: The response of the conventional and proposed relays or
healthy feeder No. (3), DP (2)
Figure 5-22: Simulated data on the healthy feeder No. (1), DP (2)
Figure 5-23: The response of the conventional and proposed relays on
healthy feeder No. (1), DP (2)73
Figure 5-24: Simulated data on the healthy feeder No. (1), DP (2) that is
exposed to voltage recovery starting current condition
Figure 5-25: The response of the conventional and proposed relays to
voltage recovery starting current condition on healthy
feeder No. (5), DP (2)
Figure 5-26: Simulated data on the healthy feeder No. (6), DP (1) that is
exposed to mutual coupling condition

Figure	5-27: The response of the conventional and proposed relays to
	mutual coupling condition on healthy feeder No. (6), DP
	(1)
Figure	5-28: Simulated data on the healthy feeder No. (9), DP (1) that is
	exposed to circulating residual current during normal
	loading77
Figure	5-29: The response of the conventional and proposed relays to
	circulating current during normal loading on healthy feeder
	No. (9), DP (1)