Customized Photorefractive Keratectomy Versus LASIK for Correction of Myopia

Thesis

Submitted for Partial Fulfillment of MD degree in Ophthalmology

Mohamad Alsadawy Hassan Alsadawy
M.Sc Ophthalmology
Al-Azhar University

Under Supervision of

Prof. Dr. **Sayed Mostafa Eliwa**

> Professor of Ophthalmology Faculty of Medicine Al-Azhar University

Prof. Dr.
Mohamad Anwar Almasry

Professor of Ophthalmology Faculty of Medicine Al-Azhar University

Prof.Dr.

Mahmoud Mohamad Ismail

Professor of Ophthalmology Faculty of Medicine Al-Azhar University

Prof. Dr. Tarek Abd-Alaziz Albeltagi

Professor of Ophthalmology Research Institute of Ophthalmology

Faculty of Medicine Al-Azhar University Egypt Cairo-2013

سورة البقرة الآية: ٣٢

Acknowledgements

Praise is to ALLAH, the Sustainer of the worlds, and may peace and blessings be upon the Seal of the Prophet Mohamad.

I would like to express my cordial appreciation and utmost gratitude to **Prof. Dr. Sayed Mostafa Eliwa** for his constant support and understanding, both of which were a great encouragement during the preparation of this work.

Thanks are more than to **Prof. Dr. Mohamad Anwar Almasry** who, without his unfathomable aid and guidance this work never have seen the light.

My deepest thanks and appreciation are presented to **Prof .Dr. Mahmoud Mohamad Ismail** for his patience, his great effort and his precious guidance.

My deepest thanks and appreciation are presented to **Prof. Dr. Tarek Abd-Alaziz Albeltagi** for his patience, his great effort and his precious guidance.

I am also grateful to my professors who more than willingly contributed valuable pieces of their researches and knowledge. Which were essential for the completion of this study.

Finally yet importantly, I would like to thank my family, as each member had a hand in the production of this modest piece of work.

Mohamad Alsadawy

Index

Content	
> List of Figures	
> List of Tables	
> List of Abbreviations	vi
> Introduction	1
> Aim of the Work	3
> Review of literature	4
I. Applied histology of the cornea	4
II. Physiological optics and vision	7
III. Keratorefractive surgery	9
IV. Review of basic wave front optics	16
V. Chromatic aberration	23
VI. Contrast sensitivity benefit of adaptive optics	
VII. Metrics to define image quality	
VIII. Technology requirements and devices for customized	45
corneal ablation	
IX. The effect of Pupil Size and Accommodation	61
Dynamics on Customized Wavefront	
X. Wound Healing in Customized Corneal Ablation	65
> Patients and methods	74
> Results	88
> Discussion	
> Appendix	
> Summary	
> Conclusion	
> Recommendations	
> References	
> Arabic summary	

List of Figures

Number	Figure	Page
Fig.1	Histology of normal human cornea	4
Fig.2	Histology of rabbit corneal endothelial cells	6
Fig.3	Optical schematic of the human eye imaging system	8
Fig.4	Photorefractive keratectomy (PRK)	10
Fig.5	Laser-assisted stromal in situ Keratomileusis	12
Fig.6	Radial keratotomy	14
Fig.7(A)	Effect of change in pupil size on retinal image	16
Fig.7(B)	Effect of change in pupil size on retinal image	16
Fig.8	The relationship between the wavefront and light rays	20
Fig.9	The aberrated wavefront.	21
Fig.10	The wave aberration.	22
Fig.11	Zernike pyramid	22
Fig.12	Ocular chromatic aberration	24
Fig.13	Simulation of the effect of TCA induced by pupil decentration on the retinal image.	26
Fig.14	Effect of chromatic aberration on the image of a white point of light with equal-energy spectrum	27
Fig.15	Two-dimensional MTFs for the four subjects.	31
Fig.16	Two-dimensional CSFs (linear interpolations) for the four subjects	32
Fig.17	(A) MTF AO/no AO ratios and (B) CSF AO/no AO ratios as a function of spatial frequency(C) Comparative AO/no AO ratios for the MTF (in blue) and the CSF (in green).	32
Fig.18 (A)	The PSF for increasing pupil sizes in a perfect eye	34
Fig.18 (B)	The PSF for increasing pupil sizes in a typical human eye	34
Fig.19	Two letters sizes convolved with the same PSF	35

Number	Figure	Page
Fig.20	Strehl ratio	36
Fig.21	Pictorial demonstration of the calculation of the MTF and the PTF	38
Fig.22	Wave aberration, PSF, and MTF for three different wave aberrations	40
Fig.23	Limits imposed by the discrete photoreceptor array	43
Fig.24	Illustration of the sampling limit	44
Fig.25	Gaussian beam delivery with ideal spot overlap to produce a very uniform, smooth ablation	46
Fig.26	Nonsequential spot demonstrating adequate space to avoid interference with the evacuation plume and thermal build up between pulses	47
Fig.27	A) Ablation plume with a broad beam laser delivery B) Ablation plume with scanning spot laser delivery	48
Fig.28	Stress wave amplitudes as measured with a hydrophone within a porcine eye treated with differing excimer laser beam diameters	50
Fig.29	Recorded tracing of fixation-related eye movement during LADAR Vision tracking	51
Fig.30	Concept of Eye Tracking For Accurate Corneal Ablations During Movements of the Eye	52
Fig.31	Aberrometry Type - Wavefront Sensing - Concept of "Outgoing" Reflective Aberrometry (Shack- Hartmann Device)	54
Fig.32	Patient's pupil view before the aberrometry measurement	55
Fig.33	Captured centroid of the patient by means of the CCD camera of the aberrometer	56
Fig.34	Total wavefront aberration map of a patient with irregular astigmatism over the pupil area	56
Fig.35	Aberrometry Type - Wavefront Sensing -Concept of "Retinal Imaging" Aberrometry (Tscherning Device) With Retinal Imaging Wavefront sensing.	58
Fig.36	"Ingoing" Adjustable Aberrometry (Spatially Resolved Refractometer).	59

Number	Figure	Page
Fig.37	Mesopic pupil diameter of 340 eyes prior to LASIK	63
Fig.38	Mean RMS wavefront error for a large cohort of 340 normal eyes prior to LASIK	63
Fig.39	Potential effect of corneal wound healing on customized corneal ablation	66
Fig.40	Ultrasonic pachymetry	77
Fig.41	Corneal topography	78
Fig.42	Wavescan system	78
Fig.43	Marking of the cornea to facilitate good alignment after surgery	82
Fig.44	Application of the suction ring	82
Fig.45	Lifting of the corneal flap after microkeratome movements	83
Fig.46	Drying the stromal bed before application of laser	83
Fig.47	Stromal bed washing then flap reposioning by Lasik irrigation canula then flap ironing	84
Fig.48	Age distribution of patients in both groups	89
Fig.49	Sex distribution of patients in both groups	90
Fig.50	Pre and post operative pupil WF diameter of Lasik group	91
Fig.51	Mean pre and post operative k reading of Lasik group	92
Fig.52	HO%, Q-value and Eff, Blur in Lasik group	93
Fig.53	Pre BCVA and post UCVA in Lasik group	95
Fig.54	Pre and post operative Contrast sensitivity(CS) using Cambridge low contrast gratings in Lasik group	97
Fig.55	pre and post operative HOA in Lasik group	101
Fig.56	pre and postoperative total and WF RMS in Lasik group	102
Fig.57	The mean pre and post operative pupil WF diameter of PRK group	103
Fig.58	Mean pre and post operative k reading of PRK	104

Number	Figure	Page
	group of PRK group	
Fig.59	The mean spherical eqavalent of pre op manifest refraction of both groups	105
Fig.60	HO%, Q-value and Eff, Blur of PRK group	106
Fig.61	Pre BCVA and post UCVA of PRK group	108
Fig.62	The mean Pre and post operative Contrast sensitivity(CS) using Cambridge low contrast gratings of PRK group	110
Fig.63	Pre and post operative HOA of PRK group	114
Fig.64	Pre and postoperative total and WF RMS of PRK group	115
Fig.65	pre operative total RMS WF RMS pupil WF diameter and mean k reading of both groups	118
Fig.66	Post operative total RMS WF RMS pupil WF diameter and mean k reading of both groups	119
Fig.67	spherical equivalent of pre op manifest refraction of both groups	120
Fig.68	The mean pre operative pachymetry of lasik and PRK	121
Fig.69	the mean ablation depths of both groups	122
Fig.70	Pre operative HO% Q-value and Eff, Blur of both groups	124
Fig.71	Post operative HO% Q-value and Eff, Blur of both groups	125
Fig.72	Pre BCVA of both groups	127
Fig.73	Post operative VA of both groups	128
Fig.74	Pre operative contrast sensitivity of both groups	130
Fig.75	Postoperative contrast sensitivity of both groups	130
Fig.76	Pre operative individual HOA of both groups	136
Fig.77	Post operative individual HOA of both groups	137

List of Tables

Number	Table	Page
Table 1	Distribution of patients in both groups	89
Table 2	Sex distribution of patients in both groups	90
Table 3	Pre and post operative pupil wf diameter of Lasik	91
	group	
Table 4	HO%, Q-value and Eff, Blur in Lasik group	93
Table 5	Pre BCVA and post UCVA in Lasik group	95
Table 6	Pre and post operative Contrast sensitivity using	97
	Cambridge low contrast gratings in Lasik group	
Table 7	Pre and post operative HOA in Lasik group	101
Table 8	Pre and postoperative total and WF RMS in Lasik	102
	group	
Table 9	The mean pre and post operative pupil WF diameter	103
	of PRK group	
Table 10	Mean pre and post operative k reading of PRK	104
	group	
Table 11	HO%, Q-value and Eff, Blur of PRK group	106
Table 12	Pre BCVA and post UCVA of PRK group	108
Table 13	The mean Pre and post operative Contrast	110
	sensitivity(CS) using Cambridge low contrast	
	gratings of PRK group	
Table 14	Pre and post operative HOA of PRK	114
Table 15	Pre and postoperative total and WF RMS of PRK group	115
Table 16	Pre operative total RMS WF RMS pupil WF	118
Table 17	diameter and mean k reading of both groups Post operative total RMS WF RMS pupil WF	119
10001011	Tool operative total Kivio wit Kivio pupil wit	

Number	Тавlе	Page
Table 18	diameter and mean k reading of both groups Spherical equivalent of pre op manifest refraction of	120
14510 10	both groups	120
Table 19	The mean pre operative pachymetry of both groups	121
Table 20	The mean ablation depths of both groups	122
Table 21	Pre operative HO% Q-value and Eff, Blur	124
Table 22	POST operative HO% Q-value and Eff, Blur	125
Table 23	Pre BCVA and CS	127
Table 24	Post operative VA	128
Table 25	Post operative contrast sensitivity	130
Table26	Pre operative individual HOA	136
Table 27	Post operative individual HOA	137
Table 28	Acuity conversion table	147

List of Abbreviations

AO	Adaptive optics.
ASCRS	American Society of Cataract and Refractive Surgery.
BCVA	Best corrected visual acuity.
c/deg	cycles per degree
COAS	Complete Ophthalmic Analysis System.
CSF	Contrast Sensitivity Function.
D	Diopter.
DNA	Deoxyribonuclic acid.
f	frequency.
FDA	Food and Drug Administration.
GVA	Glare visual acuit
HOA	Higher-Order Aberrations.
LASEK	Laser subepithelial keratomileusis.
LASIK	Laser In Situ Keratomelieusis.
LCVA	Low contrast visual acuity.
MTF	Modulation Transfer Function.
NVCs	Night vision complaints
OPD~Scan	Optical Path Difference-Scan.
OTF	Optical Transfer Function.
OZ	Optical zone.
P	Probapility value.
PRK	Photorefractive keratectomy.
PSF	Point Spread Function.
PTF	Phase Transfer Function.
RMS	Root mean square.
SD	Standard Deviation.
SLO	Scanning Laser Ophthalmoscope.
Tracey~VFA	Tracey Visual Function Analyzer
UCVA	Uncorrected visual acuity.
Vs	Versus.
WASCA	Wavefront Aberration Supported Cornea ablation.
WF	Wavefront.
WF~LAS1K	Wavefront-guided LASIK.
X	Mean value.
Z	Zernike mode
λ	wavelength.

An Introduction to Wavefront Guided Visual Correction

We have been correcting second-order aberrations such as myopia, hyperopia, and astigmatism for the past 200 years and are now on the verge of being able to detect and correct higher-order aberrations with laser refractive surgery, contact lenses, and intraocular lenses (IOLs). Customized ablation attempts to optimize the eye's optical system using a variety of spherical, cylindrical, aspherical, and asymmetrical treatments based on an individual eye's optics and anatomy, as well as the patient's needs and preferences. Customization can be used to improve optical quality in normal eyes, as well as eyes with atypical optical aberrations caused by corneal scarring, penetrating keratoplasty, central islands. decentered ablations. lenticular abnormalities, and spherical IOL implants. Customized correction involves three forms of customization: functional, anatomical, and optical. All three need to be utilized to optimize the patient's results. (1)

Quality of vision of the normal human eye is limited by principally two main factors; the optical properties of the eye and the neural processing properties of the visual pathways. (2,3) The optical properties of the eye are influenced by diffraction, light scatter and aberrations. (4)

The detrimental effects of aberrations on quality of vision have been appreciated for a long time. However, aberration measurement and possible correction has only been made possible in recent years. This advance was largely in response to early excimer laser refractive surgery outcomes where the ablative correction of spherical and cylindrical refractive errors caused an increase in aberrations.⁽⁵⁾

Optical Customization:

Corneal Topographic-Guided Ablation:

Corneal first surface aberrations and/or shape can be calculated from corneal elevation data derived from corneal topography measurement and used along with a standard refraction to design ablative corrections. Using such an approach should reduce aberrations in highly aberrated corneas, but may be detrimental (ie, induce more aberrations) in normal eyes. That is, the potential for visual enhancement beyond the 20/20 level is unknown because formulating the ideal shape for the cornea is not dependent on corneal first surface aberrations alone. Instead, an optimal compensating optic (one that reduces the aberrations of the normal eye) must be designed to negate the aberrations of the whole eye. Corneal topographic-guided ablation has the greatest potential in patients with visual loss known to be related to large corneal topographic abnormalities. Such as patients with regular and irregular astigmatism, decentered ablations, and central islands. (6,7,8)

Wavefront-Guided Corneal Ablation:

Wavefront-guided corneal ablation is designed to correct the traditional sphere and cylindrical error of the eye and reduce the eye's higher-order optical aberration. Ablative corrections that reduce the optical aberrations of the eye will increase retinal image resolution and contrast, which in turn should allow one to see the world with finer detail and higher contrast. (9)

Aim of the Work

The aim of this work is to assess the efficacy, predictability, and visual outcome of customized Lasik versus customizes PRK for correction of myopia and myopic astigmatism.

#