

Role of MR Imaging of Uterine Leiomyomas before and after Embolization

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By Samar Ahmed Elsaid Mohamed

M.B., B.Ch., Ain Shams University.
Under The Supervision Of

Prof. Dr. Khalid Esmat Allam

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

Dr. ToganTaha Abdel-aziz

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University.

Faculty of Medicine, Ain Shams University 2013

تصوير الأورام الليفية بالرنين المغناطيسي قبل وبعد سدها شريانياً

رسالة مقدمه للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمه من الطبيبة / سمر أحمد السعيد محمد بكالوريوس الطب والجراحة — كلية الطب جامعة عين شمس

تحت إشراف الدكتور / خالد عصمت علام

أستاذ الأشعة التشخيصية

كلية الطب _ جامعة عين شمس

الدكتورة / توجان طه عبدالعزيز

مدرس الأشعة التشخيصية

كلية الطب _ جامعة عين شمس

كلية الطب جامعة عين شمس 2013

بِسمِ الله الرحمن الرحيم

مَنْ عَانَكَ لَا عَلْمَ لَذَا إِلَّا مَا عَلَمْتَذَا إِنَّكَ " أَنْ رَحْمَ الْعَلِيمُ الْحَكِمَ "

سورة البعرة أية ٣٢

First and foremost, thanks are due to **Allah**, the most beneficent and merciful, without his willing I will achieve nothing.

I am so grateful and most appreciative to the efforts of *Prof. Dr. Khalid Esmat Allam*, Professor of Radio-diagnosis, Faculty of Medicine, Ain shams University, for giving me the privilege of working under her supervision and for her kind guidance.

I wish to express my thanks to *Dr. ToganTaha Abdel-aziz*, Lecturer of Radio-diagnosis, Faculty of Medicine, Ain shams University. No words can express what I owe her for her endless patience and continuous advice and support.

Lastly and not least, I send my deepest love and gratitude to my large family (Mum-Dad-sister and brothers) and my small family (my husband -my son) for their endless and continuous help and support. Any success I ever achieve is only possible because of them.

Samar Ahmed Elsaid

Contents

	Page
- Introduction and aim of the work	1
- Gross and MRI anatomy of the uterus	5
Gross anatomy of the uterus	6
MRI anatomy of the uterus	17
• MRA of vascular supply of the uterus	21
- Pathogenesis of uterine leiomyoma	23
Techniques of magnetic resonance imaging of the uterus	35
- MRI imaging of uterine leiomyoma before and after embolization	46
- Illustrative cases	104
- Summary and conclusion	123
- References	126
Arabie summery	
- Arabic summary	136

Figure Title Page No.

1.	Anatomy of the uterus and its relation to urinary bladder and rectum	5
2.	The uterus is divided into a fundus, body, isthmus, and cervix	6
3.	Parts of fallopian tube	8
4.	Peritoneal folds of the uterus	10
5.	ligaments of the uterus	11
6.	Support ligaments of female pelvis	12
7.	Variations in uterine position and their terminology	13
8.	1	
	show blood supply and ureter relative to uterine artery, cervix and vaginal fornices	15
9.	Lymph drainage of the uterus	16
10.	MR of female pelvis: sagittal section demonstrating uterus and cervix	19

No.		rage
11.	MR of female pelvis: transverse T2-weighted image showing lower body of uterus and both ovaries	20
12.	MRA (magnetic resonance angiogram) of the pelvis is often performed simultaneously with the MRI of the uterus to better demonstrate the blood supply	22
13.	Multiple leiomyomas on cut section, the tumors are well circumscribed, bulging above the cut surface. These leiomyomas are intramural and one is submucosal. A prolapsed, submucosal leiomyoma protrudes into the endocervical canal	
1 /	T	24
	Types of leiomyoma	26
15.	Benign degeneration of leiomyoma	29
16.	Degenerated submucosal leiomyoma	48
17.	Multiple intramural leiomyomas	49
18.	Large broad-based subserosal leiomyoma	50

Figu No.		Page
19.	Subserosal leiomyoma	50
20.	Pedunculated intracavitary leiomyoma	52
21.	pedunculated subserosal leiomyoma	52
22.	Broad ligament leiomyoma	54
23.	Advantage of MRI over US	55
24.	The role of MRI to identify component of leiomyoma	57
25.	Leiomyoma with red degeneration	58
26.	Leiomyomas with hyaline degeneration	60
27.	Leiomyoma with cystic degeneration	60
28.	Diffuse adenomyosis	62
29.	Focal adenomyosis	64
30.	Coexistence of adenomyosis and leiomyomas	65

Figure No.	$\it Title$	Page
	ifferentiation of a leiomyoma from an dnexal mass	66
	fferentiation of a leiomyoma from an adnexal ass not ovarian fibroma	67
33. Di	fferentiation of a fibroma from a leiomyoma	68
	fferentiation of a uterine contraction from a omyoma	70
35. Ut	erine leiomyosarcoma	72
	lective catheterization (cross-over) of right erine artery and after embolization	75
	pulsion of a devascularized leiomyoma after	80
38. St	ubmucosal leiomyoma that became	

intracavitary after UFE

endometrial interface) and D (largest leiomyoma

dimension) measurements.....

39. submucosal leiomyoma with sample I (largest

82

83

Figu No.		Page
40.	Viable cervical leiomyoma after UFE	85
41.	Viable cervical leiomyoma after UFE with non viable fundal leiomyoma	85
42.	UFE of leiomyomas and adenomyosis	88
43.	Use of dynamic MR imaging to demonstrate extent of leiomyoma	90
44.	Parasitization of ovarian vasculature	92
45.	Complete coagulative necrosis	96
46.	UFE failure due to regrowth	97
47.	Tubo-ovarian abscess	102
48.	Case (1)	104
49.	Case (2)	106
50.	Case (3)	108
51.	Case (4)	110
52.	Case (5)	111

Figure No.	Title	Page
53. Case	(6)	112
54. Case	(7)	114
55. Case	(8)	115
56. Case	(9)	116
57. Case	(10)	117
58. Case	(11)	119
59. Case	(12)	121

Introduction

Leiomyoma, the most common uterine neoplasm, is composed of smooth muscle with varying amounts of fibrous connective tissue. Most leiomyomas are asymptomatic, but patients may present with abnormal uterine bleeding or bulk-related symptoms. (*Sandeep et al.*, 2012).

Medical treatment with hormone therapy is usually prescribed initially to reduce or eliminate symptoms related to fibroid. Surgical treatment, such as myomectomy or hysterectomy is proposed subsequently in cases of failure (*Brunereau et al.*, 2008).

For some patients, major surgery is a high risk procedure so that interventional radiology provides an alternative tool to invasive therapeutic surgical procedure. Nowadays, however, interventional radiology is widely accepted as a distinct line of treatment for many diseases providing that being a less invasive procedure (*Kirch et al.*, 2006).

Over the past decade, uterine fibroid embolization (UFE) has been an effective minimally invasive treatment for symptomatic patients. Magnetic resonance (MR) imaging is the most accurate imaging technique for detection and evaluation of leiomyomas and therefore has become the imaging modality of choice before and after UFE (Sandeep et al., 2012).

MR imaging can help triage patients to the most appropriate therapy, thereby decreasing the number of unnecessary surgeries. This reduction may potentially reduce healthcare expenditures. Over time, preprocedure MR imaging is the diagnostic tool of choice for determining patient eligibility for UFE and for assessing potential procedural risk (*Sandeep et al.*, 2012).

Advantages of MRI over any other modality of imaging include multiplanar imaging capability, a larger field of view, increased spatial resolution, improved anatomic detail, and the ability to detect other pelvic disorders. MRI can assess fibroid viability by detecting contrast agentenhancement. Magnetic resonance angiography has a useful role in evaluation of pelvic vasculature. Magnetic resonance parameters such as T1 and

T2 relaxation times and diffusion-weighted characteristics have an emerging role in predicting outcome before and after embolization. MRI may be used to evaluate technical success after embolization (*Kirbyet al.*, 2010).

Aim of the work:

To review the advantages of magnetic resonance imaging (MRI) including diagnostic features, viability and in demonstration of vascular anatomy before arterial embolization. Also review the role of MRI in predicting postembolization outcome.