Evaluation of fetal midthigh fat to lean mass proportion as a predictor of birth weight and fetal outcome in preeclampsia and diabetes

Thesis

Submitted for the partial fulfillment of Master Degree in Obstetrics and Gynecology

By

Yamen Mohamed Samir Yahia M.B.B.Ch. Alexandria University

Under supervision of

Prof. Dr. Sherif Abdel Khalek Akl

Professor of Obstetrics & Gynecology Ain Shams University

Dr. Rany M. Harara

Lecturer of Obstetrics & Gynecology
Ain Shams University

Faculty of Medicine Ain Shams University

(2010)

Acknowledgement

First and foremost,

I would modestly like to thank

"ALLAH"

Not only for his great gifts

but also

for honoring me with his blessings,

furthermore for rewarding me for my work,

and granting me the power to do my best efforts

day and night

to accomplish this work

I would like to express my endless gratitude to

Prof. Sherif Abdel Khalek Akl

Professor of obstetrics & gynecology Faculty of medicine, Ain Shams University

For giving me the honor to work under his supervision and providing me with a lot of encouragement and support

Also my deep thanks to

Dr. Rany Mohamed Harara

Lecturer of obstetrics & gynecology
Faculty of medicine, Ain Shams University

For his generous assistance, valuable guidance and unfailing efforts during the whole period of the study Finally I would like to thank my parents and my wife who gave me a lot of help.

CONTENTS

	Page
Introduction and Aim of the work	i
Review of literature	1
Variations in fetal body weight	1
Fetal fat mass & lean mass	27
Estimation of fetal weight	40
Patients and Methods	61
Results	68
Discussion	89
Conclusion	106
Recommendations	107
References	108
Arabic summary	

AC Abdominal circumference	:e
AF Amniotic flui	d
AFI Amniotic fluid inde	X
BMI Body mass inde	X
BPD Biparietal diameter	er
BPS Biophysical profile scor	e
BW Birth weigh	nt
CRH Corticotrophin releasing hormon	ıe
CD Caesarian deliver	у
CS Caesarian sectio	n
DM Diabetes mellitu	IS
FH Fundal heigh	nt
GDM Gestational Diabetes mellitus	
HC Head circumference	e:e
GTT Glucose tolerance tes	st
IQ Intelligence quotien	nt
IUGR Intrauterine growth retardation	1
Ln Natural logarithm	n

Kg	Kilogram
LGA	Large for gestational age
MCA	Middle cerebral artery
P	probability
SD	Standard deviation
SEFT	Sonographic estimated fetal weight
SGA	Small for gestational age
Т	Analysis of variance test (ANOVA)
UA	Uterine artery
U/S	Ultrasonography
Wt	Weight

Table No.	Title				
1	Clinical risk factors for fetal weight greater than 4000 gm.	45			
2	Ultrasonographic fetal biometric algorithm for estimating fetal weight				
3	Accuracy of single versus multiple sonographic fetal biometric examinations for detecting clinically relevant deviations in fetal weight.	59			
4	Comparison between different studied groups as regard gravidity, parity, maternal age and maternal body mass index.	68			
5	Comparison between different studied groups as regard the gestational age				
6	Comparisons between different studied groups as regard the biometric measures				
7	Comparison between different studied groups as regard the EFW.	72			
8	Comparison between different studied groups as regard the AFI.	73			
9	Comparison between different studied groups as regard the BPP and S/D ratio	74			

10	Comparison between different studied groups as regard the midthigh lean mass area	75
11	Comparison between different studied groups as regard the fetal mid thigh subcutaneous fat area	76
12	Comparison between different studied groups as regard the total midthigh area	77
13	Comparison between different studied groups as regard the birth weight.	78
14	Comparison between different studied groups as regard the Apgar score.	79
15	Comparison between different studied groups as regards the fat lean variables	81
16	Correlation between birth weight and some variables.	84
17	Correlation between Apgar score and some variables	85

Figure No.	Title	Page
1	The principal causes and most common conditions that is associated with fetal growth restriction.	8
2	Algorithm for treatment of suspected macrosomia.	26
3	A representative image at which routine estimates of fetal abdominal circumference are made as part of the overall assessment of fetal growth.	34
4	Schematic of fat and lean mass of the fetal thigh by Ultrasonographic image	34
5	Different formulae used for estimating birth weight by ultrasound.	52
6	Comparison between different studied groups as regard the gestational age	69
7	Comparison between different studied groups as regard the AC.	71
8	Comparison between different studied groups as regard the EFW.	72
9	Comparison between different studied groups as regard the AFI.	73

10	Comparison between different studied groups as regard the S/D	74
11	Comparison between different studied groups as regard the midthigh lean mass	75
12	Comparison between different studied groups as regard the fetal midthigh subcutaneous fat	76
13	Comparison between different studied groups as regard the total midthigh area	77
14	Comparison between different studied groups as regard the actual birth weight	78
15	Comparison between different studied groups as regard Appar score at 1 minute	79
16	Comparison between different studied groups as regard Appar score after 5 minutes	80
17	Comparison between different studied groups as regard the midthigh fat percent.	82
18	Comparison between different studied groups as regard the midthigh lean percent	82
19	Comparisons between different studied groups as regard the fat lean variables.	83
20	Correlation between the birth weight and Fat/lean.	86

21	Correlation Fat/HC		U	87
22	Correlation Fat/HC			88

Introduction

The identification of pregnancies at risk for preventable perinatal morbidity and mortality is a primary goal of the obstetric care provider (Bernstein, 2005).

Abnormalities of fetal growth are leading contributors to the perinatal mortality rate (**Lerman, 2007**).

Under conditions of fetal undergrowth, identified as fetal growth restriction (most commonly defined when estimated fetal weights or birth weights are below some preset percentile "third, fifth or tenth" of standardized population specific norms), the perinatal mortality rate is 6–10 times greater than that for a normally grown population (**Gardosi, 1998**).

The risk of poor fetal growth is high in special situations including the neonatal complications of respiratory distress syndrome, hypoglycemia, hypocalcaemia, hyperphosphatemia, polycythemia, hyponatremia and hypothermia (**Bernstein**, **2000**).

Majority of routine Ultrasonographic parameters (Biparietal diameter, head circumference and femur length) are valuable in the assessment of gestational age due to their resistance to environmental influence which makes them less

well suited for identification of growth abnormalities (Johnsen, 2004).

Employing measures of fetal abdominal wall thickness demonstrated that reduced abdominal wall thickness is linked to fetal growth restriction and increased morbidity (Gardel, 1999).

Other researches have demonstrated that the fat mass compartment is disproportionately reduced in growth-restricted fetuses defined by weight (**Padoan, 2004**).

Estimates of fetal fat have also been employed in the examination of fetal overgrowth. Using both abdominal wall fat thickness and proximal extremity fat area, several authors have identified increases in fetal fat mass in association with maternal diabetes (Larciprete, 2003) (Rigano, 2000).

Other researches have demonstrated that sonographic estimates of proximal extremity fat area, normalizes when women with gestational diabetes achieve strict glycemic control (Ferrazzi, 2000).

The fetal proximal extremities appear to be the primary anatomic location for the estimation of fetal lean body mass (Bernstein, 1997).

The fetal overgrowth observed with maternal diabetes is associated with identifiable increases in fetal lean body mass, but these increases tend to be proportionately smaller than the increases observed in fat area (Valensise, 2003).

Reductions in lean body area have been observed in fetal growth restriction, although the proportional reduction in fetal fat mass is also generally of greater magnitude, One exception to this is in the fetus of the smoking mother (Padoan, 2004).

Recent researches suggest that decrease in lean area in diabetic and significant increase in total fat area, also in pre-eclamptic mothers there is a disproportionate decrease in fat and lean areas, as the decrease in fat was more pronounced (Bernstein, 2000).

The ponderal index was first described by Rohrer in 1921 as an index of corpulence (**Rohrer**, **1922**).

It is an index of neonatal size (weight/length³) which describes the nutritional state of the neonate. When compared with birth weight percentile, the ponderal index demonstrates an improved ability to predict asphyxia, acidosis, hypoglycemia, and hypothermia in fetal undergrowth.

Attempts to translate the ponderal index directly to the fetus have been faced by the difficulty in accurately assessing fetal length. Nevertheless, attempts to modify the ponderal index for fetal sonographic estimation have been made (Walther, 1982).

Inspite of the significant health consequences for abnormal growth, there is a poor predictive value of fetal weight for these complications. So, there is a high need for search for alternative markers of fetal growth abnormality beyond estimates of fetal weight to try and improve the prediction of perinatal risk.