Development of sensitive HPLC method with fluorescence detection for determination of memantine and its application to pharmacokinetic study A thesis Presented by

Mohamed Gamaleldin Hassan Oraby

B. Pharm. Sci., Al-Azhar University Assiut branch, 1999

For partial fulfillment of The degree of PhD in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry)

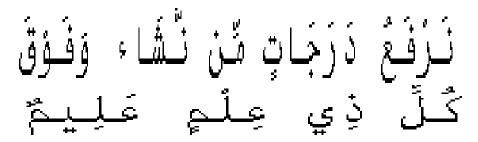
Under supervision of

Prof. Dr. Horría A. Mohamed

Department of Pharmaceutical Analytical Chemistry Faculty of Pharmacy Assiut University

Prof. Dr. Hanaa M. Abd El-Wadoud

Department of Pharmaceutical Analytical Chemistry
Faculty of Pharmacy
Assiut University


Prof. Dr. Keníchíro Nakashíma

Department of Clinical Pharmacy School of Pharmaceutical Sciences Nagasaki University, Japan

> Faculty of Pharmacy Assiut University 2013

Yûsuf - Joseph

پِسُمِ اللهِ الرَّحْمنِ الرَّحِيمِ In the Name of Allâh, the Most Beneficent, the Most Merciful.

We raise to degrees whom We please, but over all those endowed with knowledge is the All-Knowing (Allâh).

حَدَقَ الله العظيم

76 verse from

Yûsuf - Joseph

Acknowledgement

First and foremost, all praise and glory to the Almighty ALLAH, the most kind and merciful to whom I am always indebted. Thee do I worship and Thee aid I seek.

My sincere thanks and gratitude go to Professor Horria Abdel-Maged Mohamed, for her kind support, stimulating suggestions, enthusiastic guidance and encouragement helped me in all the time of the research and writing this thesis.

My sincere appreciation to Professor Hanaa Mohamed Abdel-Wadood, for her sincere help, guidance, kind support, valuable scientific comments and supervision throughout this work.

I would like to express my sincere gratitude and deep appreciation to Professor **Kenichiro Nakashima**, for his encouragement, valuable suggestions and support in the course of this research.

I wish to express my worm thanks for Associate Professor **Mitsuhiro Wada**, for his constant support and helpful suggestions and for his great effort during the research period.

I sincerely thank Assistant Professor **Rie Ikeda**, for her valuable, detailed and constructive comments that contributed to this thesis.

I wish also to express my thanks and appreciation to all members in the division of pharmacoinformatics, department of clinical pharmacy, course of pharmaceutical sciences, graduate school of biomedical sciences, Nagasaki University. I wish also to express my thanks and appreciation to all members of the department of pharmaceutical analytical chemistry, faculty of pharmacy, Al- Azhar University, Assiut branch and to all members of the department of pharmaceutical analytical chemistry, faculty of pharmacy, Assiut University and my deepest gratitude goes to my mother, ants, brothers and my sister for their love, continuous encouragement and support throughout my life.

I extend heartfelt thanks to my wife for her understanding, comforting, support and, above all, bringing me the most impressive scene, I have ever met, on the birth of my daughter and my sons.

Mohamed Gamaleldin Hassan Oraby

List of contents

	Page	
Contents	i	
List of publications	٧	
List of abbreviations	vi	
List of tables	lx	
List of figures	хi	
Summary	1	
Introduction	6	
A. General Introduction	7	
A.1. Adamantane		
A.2. Alzheimer's disease		
A.2.1. Treatment of Alzheimer's disease		
A.2.2. Memantine	12	
a. Neuropharmacological basis for MT use in the treatment of		
Alzheimer's disease	12	
b. Pharmacology of memantine	15	
c. Pharmacokinetics of memantine	18	
d. Dosage and administration	19	
B. Analytical Review	21	
B.1. Spectrometric methods	22	
B.2. Separation methods	24	
Scope of investigation		

Chapter I: De	etermination of	memar	ntine by HPLC with fluorescence detection	1
	using 4	- (4,5 -	- Diphenyl - 1 <i>H</i> - imidazol - 2 - yl)benzoy	I
	chloride (DIB-0	CI) as la	abeling reagent	33
I.1. Introd	uction			34
I.2. Exper	imental			37
I.2.1. Inst	ruments			38
1.2.2. Che	emicals and rea	agents		39
I.2.3. Pre	paration of rea	gents		40
I.2.4. Lab	eling with DIB	·Cl		41
I.2.5. Opt	imization of ch	romato	graphic conditions	41
I.2.6. Pre	paration of syr	thesize	ed DIB-MT derivative	42
I.3. Result	ts and discuss	sion		43
I.3.1. Me	chanism of rea	ction of	DIB-CI with MT	44
I.3.2. Opt	imization of the	e labelir	ng conditions	46
I.3.3. Ide	ntification of sy	nthesiz	ed DIB-MT	52
I.3.5. Chr	omatographic	separat	tion	54
I.3.6. Me	thod validation			60
i.	Linearity ran	ge		60
ii.	Limit of dete	ction an	nd limit of quantitation	60
iii.	Method prec	ision		62
iv.	Robustness			64
Chapter II: In	teraction study	of met	thazolamide, donepezil and galantamine	on
	the pharmac	okinetic	cs of memantine in rat plasma.	66
II.1. Intro	duction			67
II.2. Expe	erimental			70

II.2.1. Instruments	71
II.2.2. Chemicals and reagents	71
II.2.3. Preparation of reagents	71
II.2.4. Preparation of MT, MZA, DP and GAL for injection to rat	71
II.2.5. Animal treatment	72
II.2.6. Pharmacokinetic of MT in rat plasma	72
II.2.7. Labeling with DIB-CI	73
II.2.8. Clean-up with solid phase extraction	73
II.3. Results and discussion	75
II.3.1. Chromatographic separation	76
II.3.3. Solid phase extraction conditions	76
II.3.4. Method validation	79
i. Linearity range	79
ii. Limit of detection and limit of quantitation	81
iii. Method precision	84
iv. Robustness	86
II.3.5. Application of the method for the pharmacokinetic study of	
memantine	88
II.3.5.1. Pharmacokinetic study after co-administration of MT	
without/with methazolamide	88
II.3.5.2. Pharmacokinetic study after co-administration of MT	
without/with acetylcholinestrase inhibitors	94
a. Pharmacokinetic study of memantine co-administered with	
donepezil.	95
b. Pharmacokinetic study of memantine co-administered with	
galantamine.	98

Conclusion	102
References	105
Summary in Arabic	114

List of publications

- 1- Mohamed G. Hassan, Kamla M. Emara, Horria A. Mohamed, Hanaa M. Abdel-Wadood, Rie Ikeda, Mitsuhiro Wada, Naotaka Kuroda and Kenichiro Nakashima: Determination of memantine in rat plasma by HPLC-fluorescence method and its application to study of the pharmacokinetic interaction between memantine and methazolamide. Biomedical Chromatography; 26 (2012), 214-219.
- 2- Mohamed G. Hassan, Rie Ikeda, Mitsuhiro Wada, Naotaka Kuroda, Hanaa M. Abdel-Wadood, Horria A. Mohamed and Kenichiro Nakashima: Interaction study of acetylcholinestrase inhibitors on pharmacokinetics of memantine in rat plasma by HPLC-fluorescence method. Biomedical Chromatography; 27 (2013), 1685-1689.

List of abbreviations

AChE Acetylcholinestrase

AD Alzheimer's disease

ASC Anthraquinone sulfonyl chloride

AUC Area under curve for concentration versus time

CAI Carbonic anhydrase inhibitor

CL Clearance

C_{max} The peak concentration

Conc. Concentration

CYP450 Cytochrome P450 isoenzymes

DIB-CI 4-(4,5-diphenyl-1*H*-imidazol-2-yl)benzoyl chloride

DMF Dimethylformamide

DP Donepezil

EDTA Ethylenediamine tetra-acetic acid

EMEA European Medicines Agency

FAB-MS Fast atom bombardment mass spectrometer

FDA Food and Drug Administration

FL Fluorescence

FLX Flouxetine

Fmol Femtomole

FMOC 9-fluorenylmethyl chloroformate

GAL Galantamine

HPLC High Performance Liquid Chromatography

Inj. Injection

i.p. Intraperitoneal

IS Internal standard

i.v. Intravenous

IUPAC International Union of Pure and Applied Chemistry

LIF Laser induced fluorescence

MEKC Micellar electrokinetic chromatography

MRT Mean resident time

MT Memantine (1-amino-3,5-dimethyladamantane)

MZA Methazolamide

NAC (2-naphthoxy)acetyl chloride.

NBD-CI 4-Chloro-7-nitro-2,1,3-benzoxadiazole

nAChRs Nicotinic acetylcholine receptors

NMDA *N*-methyl-D- aspartate.

OPA *o*-phthaldialdehyde

RFI Relative fluorescence intensity

RIV Rivastigmine

SPE Solid phase extraction

THF Tetrahydrofuran

E Molar absorbitivity

List of tables

Table		Page
1	Reported HPLC methods for the determination of	
	memantine	26
2	Effect of buffer type on the RFI of MT due to labeling with	
	DIB-CI (1.5 mM).	47
3	Elemental analysis of DIB-MT	52
4	UV-, FL-spectral data and FL quantum yield of DIB-MT in	
	several solvents	55
5	Quantitative parameters of the proposed method for	
	standard MT	61
6	Method precision for standard MT using the proposed	
	HPLC method	63
7	Robustness of the proposed method for standard MT	65
8	Quantitative parameters of the proposed method for rat	
	plasma spiked with MT	80
9	A comparison of the proposed method with other reported	
	methods	82
10	Method precision for rat plasma spiked with MT	85
11	Robustness of the proposed method for rat plasma spiked	
	with MT	87
12	Pharmacokinetic parameters of MT (2.5 mg/kg)	
	without/with MZA (5.0 mg/kg) in plasma following a single	
	i.p. administration to rats	92
13	Pharmacokinetic parameters of MT (2.5 mg/kg)	

	without/with DP (5.0 mg/kg) in plasma following a single			
	i.p. administration to rats			
14	Pharmacokinetic parameters of MT (2.5 mg/kg)			
	without/with GAL (3.0 mg/kg) in plasma following a single			
	i.p. administration to rats	99		

List of figures

Figure		Page
1	Schematic representation of the NMDA receptor complex	13
2	HPLC-FL system for determination of MT	39
3	Labeling reaction of MT (100 ng/mL) with DIB-CI (1.5 mM)	45
4	Effect of DIB-CI concentration on the peak height of reaction	
	product with (■) 50 ng/ml of FLX and (△) 100 ng/ml of MT	46
5	Effect of carbonate buffer pH on the peak height of the reaction	
	product of DIB-CI with (\blacksquare) 50 ng/ml of FLX and (Δ) 100 ng/ml of	
	MT	48
6	Effect of carbonate buffer concentration on the peak height of the	
	reaction product of DIB-Cl with (\blacksquare) 50 ng/ml of FLX and (Δ) 100	
	ng/ml of MT	49
7	Effect of heating temperature on the peak height of the reaction	
	product of 100 ng/ml of MT with DIB-Cl (1.5 mM) at (□) 25°C, (■)	
	45°C, (▲) 60°C and (x) 80°C	51
8	Stability time of the derivatives; 50 ng/ml FLX (■) and (▲) 100	
	ng/ml of MT (n=3).	51
9	Fast atom bombardment mass spectrometry for DIB-MT	53
10	Effect of acetonitrile ratio on peak height (A) and on retention	
	time (B) of 50 ng/mL of IS (■) and 100 ng/mL of MT (▲)	57
11	Chromatograms of reagent blank (A) and that for standards FLX,	
	50 ng/mL and MT, 100 ng/mL (B)	58
12	Chemical structure of FLX (IS)	59