

Lipid Nanocarriers for Treatment of Certain Types of Cancer

A Thesis Submitted for Partial Fulfillment of the Requirements for the Master Degree of Pharmaceutical Sciences (Pharmaceutics)

By

Sally Safwat Wadie

Bachelor of Pharmaceutical Science, June 2011, Ain Shams University Demonstrator, department of Pharmaceutics and Industrial pharmacy Faculty of Pharmacy, Ain Shams University

Under the supervision of

Professor Nahed Daoud Mortada

Professor of Pharmaceutics and Industrial Pharmacy Faculty of pharmacy, Ain Shams University

Associate Professor Rania Mohammed Hathout

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Associate Professor Rania Aziz Ishak

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy
Faculty of Pharmacy
Ain Shams University, Cairo, Egypt
(2017)

Acknowledgment

First and foremost thanks to God for helping me to fulfill this work.

I would like to express my deepest appreciation and sincere gratitude to **Professor Dr. Nahed**Daoud Mortada, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain

Shams University, for her instructive supervision, kind help and generous attitude throughout the development of this work.

I offer my sincerest gratitude to my supervisor, Associate Professor Dr. Rania Mohamed Hathout, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who has supported me throughout my thesis with her patience and knowledge, and provided me extensive personal and professional guidance and taught me a great deal about both scientific research and life in general.

I would especially like to thank Associate Professor Dr. Rania Aziz Ishak, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, as my teacher and mentor; she bore a lot of work load until this thesis was completed and taught me more than I could ever give her credit for here. One simply could not wish for a better or friendlier supervisor.

I also like to thank all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy for their valuable help, support and encouragement.

I like to thank the staff members of the Regional Center For Mycology And Biotechnology, Azhar university, for their help during the in vivo studies of this thesis.

Finally I would like to express my deepest thanks to my parents, for their patience throughout the whole work carried out in this thesis.

List of Contents

Item	Page
List of Abbreviations	III
List of Tables	V
List of Figures	VI
Abstract	VIII
General Introduction	1
Scope of work	21
Chapter I: Preparation and evaluation of Simvastatin-loaded Lipid	
nanocapsules	
Introduction	23
Experimental	27
Methodology	28
Construction of the calibration curve of SV in distilled water/methanol	28
and phosphate buffer saline/ethanol	
Preparation of SV loaded LNCs	28
Optimization of SV loaded LNCs using D-optimal Mixture design	29
Characterization of the prepared LNCs	30
1- Particle size and zeta potential analysis	30
2- <i>In vitro</i> release of SV loaded LNCs	30
3- Imaging the prepared LNCs using high resolution transmission	31
electron microscopy (HR-TEM)	31
4- Differential scanning calorimetry (DSC)	31
5- Effect of aging on PS, PDI and % Q48 h	31
6- Biological studies	32
7- Sterilization of SV loaded LNC	33
Results and Discussion	34
Calibration curve of SV in distilled water/methanol (60:40) and	34
phosphate buffer saline/ethanol (70:30)	<i></i>
Optimized SV loaded LNCs	37
1- Models analysis	37
2- Models diagnostics	41
3- Models validation	44
4- Interpretation of the models results	46
High resolution transmission electron microscopy (HR-TEM)	49
Differential scanning calorimetry (DSC)	50
Effect of aging	51
Biological studies	51
Sterilization results	53
Conclusions	54
Chapter II: Preparation and evaluation of SV loaded Nanostructured	
lipid carrier	

Introduction	57
Experimental	63
Methodology	65
Preparation of SV loaded NLC	65
Optimization study	65
Preparation of PEG/Glycerides-based SV loaded NLC formulations	66
Lyophilization of SV-loaded NLC	66
Physicochemical characterization of the prepared NLC	67
1- Determination of the drug EE% and drug loading efficiency (DL)	67
2- PS and surface charge measurements	68
3- High resolution transmission electron microscopy (HR-TEM)	68
4- Differential scanning calorimetric (DSC) study	68
In vitro drug release study	69
Physical stability study	70
Sterilization of SV loaded NLC	70
Biological studies	70
1- In vitro cytotoxicity assessment	70
2- Cellular uptake study of blank NLC	71
3- Quantitative analysis of intra-cellular SV concentrations from the	72
selected loaded NLC	
3.1- Quantitative analysis of SV by HPLC assay	72
3.2- Cellular uptake study of SV loaded NLC	72
Statistical Analysis	73
Results and Discussion	74
Optimization of SV loaded NLC	74
Effect of PEG/Glycerides on SV-loaded NLC characteristics	79
Physical stability study of NLC formulations	81
Optimization of the lyophilization process	82
HR-TEM of the prepared NLC	89
DSC studies	89
In vitro drug release studies	92
Physical stability of the selected lyophilized NLC formulations	96
Sterilization by gamma irradiation	96
In vitro cytotoxicity of SV-loaded NLC against cancer cells	100
Cellular uptake of fluorescent blank NLC	103
Quantitative analysis of intra-cellular SV concentrations	103
1- Calibration curve of SV using HPLC assay	103
2- Cellular uptake study of SV loaded NLC	106
Conclusions	110
Summary	112
References	122

List of Abbreviations

Antibodies	Ab
Atorvastatin	ATV
ATP-binding cassette	ABC
Confocal laser scanning microscopy	CLSM
D- Optimal mixture design	DOMD
Differential scanning calorimetry	DSC
Distilled water	DW
Drug loading	DL
Drug to lipid	D/L
Dynamic light scattering	DLS
Encapsulation efficiency	EE
Enhanced permeability and retention	EPR
Farnesyl pyrophosphate	FPP
Fluvastatin	FV
Generally regarded as safe	GRAS
Geranyl geranyl pyrophosphate	GGPP
High performance liquid chromatography	HPLC
High resolution transmission electron microscopy	HR-TEM
HMG-Co A reductase	HMGCR
Hydrophile lipophile balance	HLB
Hydroxy-methyl glutaryl	HMG
Hypoxia-inducible factor 1 α	HIF-1 α
Kilogray	KGy
Labrafac lipophile® WL 1349	LL
Lipid nanocapsules	LNCs
Lipid nanoparticles	LNPs
Long circulating liposomes	LCL
Lovastatin	LV
Low density lipoproteins	LDL
millipascal-second	mPa.s
Molecular weight	Mw
Mononuclear phagocytic system	MPS
Multi-drug resistance	MDR
Nanoparticles	NPs
Nanostructured lipid carriers	NLCs

Nitric oxide	NO
Paclitaxel	PTX
Particle size	PS
Percent drug released after 48 hours	%Q48h
P-glycoproteins	P-gp
Phase-inversion temperature	PIT
Phase-inversion zone	PIZ
Phosphate buffer saline	PBS
Phosphatidylcholine	PC
Poly (glycolic acid)	PGA
Poly (lactic acid)	PLA
Poly (lactic-co-glycolic acid)	PLGA
Poly ethylene glycol	PEG
Polydispersity index	PDI
Pravastatin	PRV
Reticuloendothelial systems	RES
Simvastatin	SV
Solid lipid nanoparticles	SLNs
Solid lipid to oil	S/O
Surfactant	SAA
Tumor associated macrophages	TAMs
Zetapotential	ZP

List of Tables

Table no.	Table Title	Page
1	The ranges of the investigated independent variables	29
2	Relationship between concentration of SV and absorbance λ_{max} 238 nm in distilled water/methanol 60:40	35
3	Relationship between concentration of SV and absorbance λ_{max} 238 nm in phosphate buffer saline/ethanol 70:30	36
4	D-Optimal Mixture Design of Simvastatin loaded lipid nanocapsules	39
5	Results of analysis of the investigated responses	40
6	Validation of Simvastatin lipid nanocapsules model generated from a Doptimal mixture design	45
7	Changes in PS, PDI and %Q48 h of selected simvastatin lipid nanocapsules formulations over 6 months	51
8	Characterization of a selected SV-LNC after sterilization using 25 KGy gamma radiation	53
9	Formulation variables and their levels for the preparation of SV-loaded NLC using Compritol and Labrafac as the solid lipid and oil, respectively	66
10	NLC formulation conditions prepared in the optimization study	67
11	Formulation parameters of the prepared SV-loaded NLC in the optimization study	75
12	Formulation parameters of SV-loaded NLC prepared with different oils	80
13	PS, PDI and EE data of NLC formula (F-3) prepared with different oils before and after storage at 2-8 °C for 30 days.	82
14	PS, PDI and ZP data of the reconstituted Labrafil-based NLC before and after freeze drying with different cryoprotectant types and concentrations	84
15	PS, PDI and ZP of NLC prepared with different oils before and after lyophilization with 10% sucrose or trehalose	86
16	The <i>in vitro</i> release data of SV from drug solution, non-lyophilized and lyophilized NLC formulations prepared with different oils	93
17	Physical stability of the NLC formulations lyophilized with 10% sucrose or trehalose stored in a desiccator at room temperature for 30 days	97
18	The IC ₅₀ of plain and medicated NLC prepared with different oils	100
19	Relationship between SV concentrations and the Peak Area Ratio of SV/ATV in PBS pH 7.4 containing 30% ethanol	105

List of Figures

Figure no.	Figure Title	Page
1	Passive versus active targeting approaches	5
2	Schematic diagram represents different types of NPs	14
3	Chemical structure of SV	19
4	Chemical structure of Solutol	25
5	Ultraviolet spectrum of SV in distilled water/methanol (60:40) and phosphate buffered saline/ethanol (70:30).	34
6	Calibration curve of SV in distilled water/methanol (60:40) at 238 nm	35
7	Calibration curve of SV in phosphate buffered saline: ethanol 70:30 at pH=7.4 at 238 nm.	36
8	Predicted versus actual results of (a) PS, (b) PDI and (c) %Q48h models.	42
9	Box-Cox plots for (a) PS, (b) PDI and (c) %Q48 h models.	43
10	Contour (a-c) and 3D (d-f) plots of PS, PDI and %Q48h models, respectively. Moving from red to blue indicates decreased value of the dependent variable.	48
11	Release profiles of simvastatin from the selected lipid nanocapsules in PBS containing 30% ethanol at 37°C.	49
12	TEM images of the selected simvastatin LNCs formulations (a) Formula 2, (b) Formula 5 and (c) Formula 3.	49
13	DSC thermograms of pure simvastatin, plain LNCs and loaded LNCs (Formula 5).	50
14	Cell viability results of administered pure simvastatin versus plain and loaded selected simvastatin LNCs. Upper panel demonstrates the concentration < 90 ug/ml. (error bars represent mean± SD)	52
15	Chemical structure of (a) Labrafil, (b) Labrasol and (c) Compritol	60
16	Effect of different formulation variables on PS, PDI and ZP of SV-loaded NLC; (a) SAA concentration, (b) (S/O) ratio and (c) (D/L) ratio. Data are reported as mean ± SD. *Significant difference at p<0.05 compared with 2% polysorbate 80 in (a), 85:15 S/O in (b) and 0.25:1 D/L in (c).	77
17	Effect of different PEGylated oils on PS, PDI and ZP of SV-loaded NLC. Data are reported as mean ± SD. *Significant difference at p<0.05 compared with Labrafac.	80
18	PS (a), PDI (b) and ZP (c) of NLC prepared with different oils before and after lyophilization. Data are reported as mean ± SD	87

19	Representative TEM images of (a) blank NLC, (b) SV-loaded NLC, (c) trehalose-lyophilized NLC and (d) sucrose-lyophilized NLC.	90
20	DSC thermograms of individual components, physical mixtures and loaded NLC lyophilized with (a) trehalose and (b) sucrose.	91
21	The <i>in vitro</i> release data of SV from drug solution, non-lyophilized and lyophilized NLC formulations prepared with different oils. The inset represents the extended release profiles for 96 h.	94
22	Effect of gamma radiation on PS, PDI and ZP of the representative SV loaded NLC based on Labrafil.	99
23	MCF-7 breast cancer cell viabilities of (a) plain NLC and (b) SV-loaded NLC prepared with different oils using crystal violet staining method after 24-h incubation at 37°C. Data are reported as mean ± SD. *Significant difference at p<0.05 compared with plain Labrafac NLC in (a) and SV in (b).	101
24	The optical CLSM sections (x-y axis) of MCF-7 cells incubated with fluorescent blank NLC for 3 h: (a) Labrafil NLC, (b) Labrafac NLC and (c) Labrasol NLC. The fluorescence was estimated on a Z plane corresponding to the mid cell height (Z-axis midpoint). The cell nuclei were stained by DAPI and the blank NLC were labeled by Nile Red. The merge images of nucleus (blue) and NLC (red). The scale bar=20µm.	104
25	Chromatogram of SV and internal standard (ATV)	105
26	Calibration curve of SV using ATV as internal standard by HPLC assay. The inset shows the calibration curve for SV concentrations ranging from 5 to 30 μ g/ml.	106
27	Cellular uptake being expressed in terms of intra-cellular drug concentrations after incubation MCF-7 breast carcinoma with different SV-loaded NLC.	107

Abstract

Simvastatin (SV) belongs to the lipophilic class of statins. It is one of the most pharmacologically potent inhibitor of HMG-CoA reductase leading to inhibition of mevalonate synthesis and hence cholesterol biosynthesis. It has also been reported that high levels of mevalonate have been associated with breast malignancies. Recently, SV demonstrated anti-proliferative effect on wide varieties of cancer cell lines as it induces cell cycle arrest at G1phase.

Hence, the purpose of this study was to formulate and to *in vitro* evaluate SV-loaded lipid nanocarriers .i.e. lipid nanocapsules (LNCs) and nanostructured lipid carriers (NLC) followed by an assessment of their cytotoxicity effect on breast cancer cells aiming to passively target cancer cells when administered *via* the intravenous route.

SV-loaded LNCs were successfully prepared based on the phase inversion method. They consisted of Solutol® as the main ingredient having PEG moieties influencing both LNC formation and its stealth properties. Labrafac® was employed as the oily phase which was additionally stabilized by lecithin (Epikuron®). Moreover, the aqueous phase including sodium chloride (NaCl) greatly affected LNCs formation. The LNCs were optimized using the D-Optimal mixture statistical design where the influence of the percentages of the three independent components (variables) were studied, namely; Labrafac®, Solutol® and water. The observed dependent variables were the mean particle size (PS), polydispersity index (PDI) and percentages of SV released after 48 hours (%Q48h). The selected SV-LNCs formulation was characterized by HR-TEM and DSC studies and subjected to sterilization by gamma irradiation. Moreover, the cytotoxicity of SV-loaded LNCs was evaluated on MCF-7 breast cancer cell lines using crystal violet assay.

The results demonstrated that the physical characterization of LNCs were greatly affected by the ratio of surfactant to oil. Increasing the amount of Solutol reduced the interfacial tension of the oily core of LNCs resulting in smaller and homogenously distributed particles. LNCs showed sustained release of SV owing to the hindrance property imparted by Solutol. The obtained statistical models were significant at a level of p<0.05 and highly fitting with r² > 0.7. High correlation between the experimental and the predicted runs together with high adequacy of the models were attained. The generated models achieved high prediction power scoring percentages bias less than 7%.

SV-LNCs were spherical with smooth surfaces and the drug was molecularly dispersed in the lipidic matrix as being represented by TEM and DSC, respectively. The selected formula was successfully sterilized at 25 KGy dose of radiation and was found to boost the cytotoxicity of SV.

SV-loaded NLCs were effectively prepared by the hot homogenization technique incorporating a mixture of solid and liquid lipids. The solid lipid comprised Compritol E ATO, while the oil consisted of Labrafac Lipophile WL 1349 as medium chain triglycerides without PEG moiety. Labrasol® and Labrafil® M 1944 CS, as examples of PEG containing lipids with different HLB, were employed replacing Labrafac® to produce PEGylated nanocarriers without physical or chemical synthesis. All the prepared formulations were stabilized by Polysorbate 80. Applying one-factor-at-a-time (OFAT) technique, a preliminary study was conducted studying several variables at different levels. The prepared formulae were characterized in terms of PS, PDI, ZP and EE%. Lyophilization of the selected formula was optimized using different types and concentrations of cryoprotectants. Selected NLC formulations were subjected to *in vitro* release studies, HR-TEM imaging, DSC and sterilization. The cytotoxicity of selected SV-NLCs was also evaluated on MCF-7 breast cancer

cell lines using crystal violet assay and further confirmed by confocal laser scanning microscope (CLSM) and quantitative analysis of intracellular drug concentrations.

The preliminary study revealed that prolonging the homogenization time, reducing Polysorbate 80 concentration and raising solid lipid to oil ratio led to significant increase in PS and PDI. All the prepared NLC carried negative charges having EE% greater than 97. Hence, the optimized formulation comprised 2% Tween 80, 85:15 solid lipid (Compritol): oil (Labrafac), 0.25:1 drug: total lipids and 1% total lipids exhibiting a small mean PS of 52.3 nm, a homogenous size distribution with a PDI value of 0.177, a negatively charged surface with a ZP at -13.2 mV and an entrapment efficiency of 98.5%.

By replacing Labrafac with either Labrasol or Labrafil, NLC acquired greater PS and PDI and decreased ZP. As all prepared SV-NLC suffer from instability upon storage, they were then subjected to lyophilization efficiently using either 10% (w/w) sucrose or trehalose.

HR-TEM images of SV-NLC showed dense spherical patches having smooth surfaces and DSC studies showed complete drug entrapment in lipidic NPs. The release profiles of PEGylated formulations were found sustained compared with that of PEG-free NLC. The lyophilized formulae exhibited faster SV release pattern than their corresponding fresh ones except for Labrafac®-based NLC. Labrasol®-NLC, fresh and lyophilized formulae, followed diffusion release mechanism while Labrafac®-NLC exhibited first order release mechanism. The results of sterilization showed that the lowest dose (5 KGy) of gamma radiation imparted sterilization with minimal changes in PS, PDI and ZP.

NLC incorporating Labrafac[®], Labrasol[®] and Labrafil[®] showed variable cytotoxicities against MCF-7 cell lines. NLC including Labrasol[®] exhibited the highest cytotoxicity with IC50 scored 35.2±3 µg/ml. The optical CLSM sections expounded the boosted cytotoxicity of Labrasol[®]-based NLC where more dense fluorescence was defined. Furthermore, Labrasol[®]-NLC attained the highest intra-cellular SV accumulation at different drug concentrations owing to its effect on the integrity of plasma membrane impairing the tight junctions together along with its inhibitory action on P-gp. Therefore, we deduced that Labrasol[®]-NLC could be a promising candidate for enhancing SV cytotoxicity.

To this end, the investigated lipid nanocarriers has showed promising results as successful nanocarriers for simvastatin and have demonstrated high cytotoxicity effects on breast cancer cell lines.

Keywords: Simvastatin; Lipid nanocapsules; D-Optimal Mixture design; Nanostructured lipid carriers; Medium chain triglycerides; PEGylated glycerides; Human breast adenocarcinoma cell lines; Cellular uptake.