"Chilo agamemnon" انتاج نباتات أرز محولة وراثياً مقاومة لثاقبة الساق

رسالة ماجستير في العلوم الزراعية (وراثة)

مقدمة من

عطر حسين كامل محمد بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية) - كلية الزراعة - جامعة القاهرة، ٢٠٠٦

لجنة الإشراف

الدكتور/ سوسن سامى يوسف أستاذ الوراثة المتفرغ - كلية الزراعة - جامعة القاهرة

الدكتور/ رضا علواني عبد الحليم مغيب أستاذ الوراثة المساعد _ كلية الزراعة _ جامعة القاهرة

الدكتور/ عبد السلام عبيد دراز رئيس بحوث معهد بحوث المحاصيل الحقلية مركز البحوث الزراعية

"Chilo agamemnon" انتاج نباتات أرز محولة وراثياً مقاومة لثاقبة الساق

رسالة ماجستير في العلوم الزراعية (وراثة)

مقدمة من

عطر حسين كامل محمد

بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية)- كلية الزراعة _ جامعة القاهرة ، ٢٠٠٦

لجنة الحكم
دكتور/ عفت عبد اللطيف بدر أستاذ الوراثة غير المتفرغ- كلية الزراعة- جامعة الاسكندرية
دكتور/ أحمد نجيب السيد شرف القاهرة القراثة - كلية الزراعة- جامعة القاهرة
دكتور/ رضا علوانى عبد الحليم مغيب أستاذ الوراثة المساعد – كلية الزراعة – جامعة القاهرة
دكتور/ سوسن سامى يوسف أستاذ اله راثة المتفرغ ـ كلية الذراعة ـ حامعة القاهرة

التاريخ / /

"Chilo agamemnon" انتاج نباتات أرز محولة وراثياً مقاومة لثاقبة الساق

رسالة مقدمة من

عطر حسين كامل محمد بكالوريوس في العلوم الزراعية (تكنولوجيا حيوية) ـ كلية الزراعة _ جامعة القاهرة ، ٢٠٠٦

للحصول على درجة

الماجستير

فی

العلوم الزراعية (وراثة)

قسه الوراثة كلية الزراعة جامعة القاهرة مصر

7.1.

اسم الطالب: عطر حسين كامل محمد الدرجة: ماجستير

عنوان الرسالة: انتاج نباتات ارز محولة وراثيا مقاومة لثاقبة الساق"Chilo agamemnon"

المشرفون: دكتور: سوسن سامى يوسف

دكتور: رضا علواني عبد الحليم مغيب

دكتور: عبد السلام عبيد دراز

تاریخ منح الدرجة: ٣ / ٧ /٢٠١٠

قسم: الوراثة

المستخلص العربي

تم تصميم هذه الدراسة لمقارنة القدرة الكامنة على التكشف لسبعة اصناف من الارز المتباينة وراثيا باستخدام الاجنة الناضجة كمستقطع نباتي. تم تكوين كالوس جنيني على المستقطعات النباتية في خلال ثلاثة اسابيع في بيئة نمو تحتوى mg/l 3 من 2,4- D ونشأت الاجنة الجسدية مباشرة من الكالوس الجنيني بنقله الى بيئة تحتوى على ال BA بنسبة 1/8 g و قد اظهر الصنف جيزة ١٧٨ اعلى نسبة تكشف (٣٩%) مقارنة بباقي الاصناف. وأظهرت النتائج المتحصل عليها من اختبار ال RAPD ان عدد الواسمات الكلية المتحصل عليها هو ٤٥ بالنسبة لاصناف الارز السبعة منهم ٢٩ واسم متباين بنسة تباين %64.4 . ستة عشر واسم من ال 29 واسم المتباين وجد أنها متخصصة للأطقم الوراثية المستخدمة. كما تم دراسة الثبات الوراثي بين النباتات الناتجة من زراعة الانسجة باستخدام طريقة ال RAPD و اوضحت النتائج ان نسبة التماثل الوراثي بين النبات الام و النباتات الناتجة من زراعة الانسجة للصنف جيزة ١٧٨ وصلت الى ٩١%. و تهدف هذه الدراسة الى انتاج نباتات ارز مهندسة وراثيا تشفر لجين cry11a5 لمقاومة الحشرات و تم استخدام الناقل البلاز ميدي BPI-121 المحتوى على جين cry11a5 تحت السيطرة الجينية للمشغل 35S والناهي nos و تم التأكد من نجاح نقل و ادماج جين الcry11a5 داخل جينوم النباتات الناتجة باستخدام كل من الاختبارات التالية الPCR و Southern blotd و الDot blot. ثم اختبار ثلاثة خطوط مهندسة وراثيا تشفر لcry1Ia5 بالنسبة لمقاومتها ليرقات ثاقبات الساق Chilo Agamemnon. قد وصلت نسبة الموت الى ١٠٠% في حالة تغذية اليرقات على هذه النباتات لمدة اربعة ايام مقارنة بالكنترول

الكلمات الدالة: جين ال Crylla5 ، الثبات الوراثي في الارز، المقاومة للحشرات، اعادة التكشف في الأرز، التحول الوراثي.

PRODUCTION OF TRANSGENIC RICE PLANTS RESISTANT TO STEM BORER "Chilo agamemnon"

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2010

APPROVAL SHEET

PRODUCTION OF TRANSGENIC RICE PLANTS RESISTANT TO STEM BORER "Chilo agamemnon"

M.Sc. Thesis
In
Agric. Sci. (Genetics)

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

Approval Committee

Dr. EFAT A. BADR
Emeritus Professor of Genetics, Fac. Agric., Alexandria University
Dr. AHMED NAGIB SHARAF
Professor of Genetics, Fac. Agric., Cairo University
Dr. REDA ELWANY A. MOGHAIEB
Assistant Professor of Genetics, Fac. Agric., Cairo University
Dr. SAWSAN SAMY YOUSSEF
Emeritus Professor of Genetics, Fac. Agric., Cairo University

Date: / /

SUPERVISION SHEET

PRODUCTION OF TRANSGENIC RICE PLANTS RESISTANT TO STEM BORER "Chilo agamemnon"

M.Sc. Thesis
In
Agric. Sci. (Genetics)

By

ETR HUSSEIN KAMEL MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2006

SUPERVISION COMMITTEE

Dr. SAWSAN SAMY YOUSSEF Emeritus Professor of Genetics, Fac. Agric., Cairo University

Dr. REDA ELWANY A. MOGHAIEBAssistant Professor of Genetics, Fac. Agric., Cairo University

Dr. ABD EL- SALAM EBAID DRAZ
Head of Research, Rice Research Program, Agricultural Research Center

Name of Candidate: Etr Hussein Kamel Mohammed Degree: M.Sc.

Name of Thesis: Production of Transgenic Rice Plants Resistant to Stem Borer

"Chilo agamemnon"

Supervisors: Dr. Sawsan Samy Youssef

Dr. Reda Elwany A. Moghaieb

Dr. Abd El- Salam E. Draz

Department: Genetics Approval: 3 / 7 / 2010

ABSTRACT

The present investigation was conducted to compare seven agronomically and genetically different rice (*Oryza sativa* L.) cultivars for their capacity for callus induction and plant regeneration from mature zygotic embryos. White embryonic calli were formed within three weeks in the presence of 3 mg/l 2,4, D . The somatic embryos directly originated from the embryogenic callus in the presence of 3 mg/l BA. The cultivar Giza 178 showed high regeneration frequency (39%). The data obtained from the random amplified polymorphic DNA analysis showed that a total of 45 DNA markers were detected among the seven rice cultivars of which, 29 bands were polymorphic (64.4%).

Sixteen out of the twenty-nine polymorphic RAPD markers generated were found to be genotype specific. Genetic stability in tissue cultured rice plants was examined by randomly amplified polymorphic DNA (RAPD) analysis. The genetic similarity between the mother and the regenerated plants was high for Giza 178 (91%). The main objective of the present work was to produce transgenic Egyptian rice plantlets expressing the *cry1Ia5* gene which renders plant insect tolerance. The *pBI-121* plasmid harboring the *cry1Ia5* gene under the control of 35-S promoter and NOS terminator was used. The stable integration of the *cry1Ia5* gene was confirmed using PCR, Southern blot and Dot blot analyses. Three transgenic lines expressing the *cry1Ia5* gene were bioassayed for resistance to neonate larvae of stem borer (*Chilo agamemnon*). Larval mortality of up to 100% was recorded after four days comparing with the control plants.

Key words: *cry1Ia5* gene, Genetic stability, Insect resistance, Rice regeneration, Transformation.

DEDICATION

I dedicate this work to whom my heart felt thanks: to my father, mother, sister and brother and to Professor Sawsan Samy Youssef and Dr. Reda Elwany Moghaieb for all the support and encouragement they continually offered along the period of my post-graduate studies.

ACKNOWLEDGEMENT

At first, I would like to thank ALLAH that allowing me to achieve this work, without his bless any great effort is invaluable.

I wish to express my deep gratitude to $\mathbf{Dr. Sawsan S. Youssef}$, Emeritus Professor of Genetics, Faculty of Agriculture, Cairo University, for supervision, continued assistance, guidance, great interest, encouragement, following the progress of the work with great interest and continuous criticism through the course of study. I would like also to express my deep appreciations and utmost gratitude to $\mathbf{Dr. Reda E.A. Moghaeib}$, Assistant Professor of Genetics, Faculty of Agriculture, Cairo University for his supervision of this investigation, encouragement, unlimited help, moral support and valuable guidance throughout the achievement of this study.

My special and deep thanks to Dr. Abd El-Salam Draz the deputy director of the Rice Research Program - Agricultural Research Center for his valuable help, and encouragement during this work. Sincere thanks are due to Dr. Ahmed M. EL-Sharkawy Professor of Genetics, Faculty of Agriculture, Cairo University, and Dr. Sanna A. Mohamed, Senior Researcher of Plant Protection, Plant Protection Research Institute, Agricultural Research Center, for their generous help. Many thanks are due to all the members of the Genetic Engineering Research Center, Faculty of Agriculture, Cairo University and all the members of the Department of Genetics, Cairo University for their continuous help.

CONTENTS

NTRODUCTION	
REVIEW OF LITERATURE	
1. Rice regeneration	
2. Genetic stability among regenerated rice plantlets	
3. Rice transformation system	
4. Improvement of insect tolerance in transgenic rice plant	
MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Rice regeneration	
a. Comparing regeneration capacity among seven rice	
genotypes	
b. Molecular and biochemical analyses	
1. Genetic polymorphism between rice genotypes	
2. Genetic stability among regenerated rice plantlets	
3. Transformation of rice zygotic embryos	
a. Transformation with <i>gfp</i> gene to rice genome	
b. Transgenic rice plants expressing the cry11a5 gene	
1. Molecular analysis of primary transformants	
4. The insect bioassay experiment with cry1Ia5 plants again	
the third larval instar of Chilo agamemnon	
SUMMARY	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	The main features of the seven rice cultivars used and their parentages	35
2.	Components of the diet used for rearing <i>Chilo agamemnon</i> larvae	49
3.	The analysis of variance showing the shoot induction in the seven rice genotypes regenerated in vitro (ANOVA)	53
4.	The regeneration frequencies in the seven rice genotypes under different BA concentration	55
5.	Primers used in RAPD analysis and their number of bands	57
6.	The specific RAPD markers for the seven rice genotype	59
7.	Protein banding patterns among the several rice regenerants and their seed derived parents	64
8.	Primer names, total scorable bands (T), polymorphic bands (P) and polymorphism percentage (%)	65
9.	Transformation % in rice zygotic embryos shooted with biolistic gun at different pressures	69
10.	The transformation frequencies of the two rice cultivars transformed with <i>mVIP</i> gene	73

LIST OF FIGURES

No.	Title	Page
1.	Schematic representation of the p35S $ gfp$ plasmid harboring the gfp gene under the control of	41
2.	Schematic representation of the pBI-121 <i>CRY11a5</i> plasmid harboring the <i>cry11a5</i> (<i>bt</i>) gene under the 35SP and the <i>nos</i>	46
3.	Laboratory rearing of the rice stem borers Chilo agamemnon	49
4.	Callus induction frequencies in the seven rice genotypes cultured on N6 medium	52
5.	Somatic embryogenesis in Giza 178 regenerated from mature embryos	54
6.	Shoot induction frequencies for the seven rice genotypes under different BA concentrations.	54
7.	RAPD banding patterns of the seven rice genotypes using five selected random primers	58
8.	Dendrogram for the seven rice cultivars constructed from RAPD data analysis using unweighed pairgroup	60
9.	Peroxidase (A), Estrase (B) and Protein (C) banding patterns among the several rice regenerants and their seed	62
10.	RAPD banding patterns among several rice regenerants and their seed derived parents of three rice	67
11.	PCR analysis confirming specific band of 250bp according to the transformation of 35 S-promoter into rice genome	70
12.	The expression of gfp in transgenic rice plant	71
13.	Recovery of <i>cry1Ia5</i> transgenic rice plant	73

14.	Molecular confirmation of <i>cry1Ia5</i> gene integration	75
15.	The enhanced insect tolerance in the transgenic rice plants expressing the <i>mVIP</i> .	77
16.	Mortality percentages of <i>Chilo agamemnon</i> neonates fed on non-transgenic (cont) and three transgenic lines	78

INTRODUCTION

Rice provides staple diet for more than one third of world's population. It accounts for as much as 75% of the caloric intake of the 2 billion humans living in Asia and as much as 33% of the caloric intake of nearly one billion humans in Africa and Latin America. It is the most important food in that part of the world where population densities are high and overall dietary levels are least adequate (Kinoshita and Mori, 2001).

Rice (*Oryza sativa* L. 2n=2x=24), is an annual grass which belongs to the family Gramineae (Sun *et al.*, 1990). There are two cultivated species of rice *Oryza sativa* and *Oryza glaberrima*. *O. glaberrima* is cultivated only in a limited scale in West Africa. *O. sativa* has great variation and distribution and has traditionally been divided into two subspecies, *Indica* and *Japonica* (Goff *et al.*, 2002 and Yu *et al.*, 2002). Rice production in over 1.5 billion hectares of land has an overall worldwide production of 596 million tons per annum (FAO, 1995). because rice occupies approximately 9% of the planet's arable land, it is also a key area of concern and of opportunity in environmental protection. Asia produces more than 90% of this amount, and Latin America produces 5% (Khush and Brar, 2002 and Joshi and Behera, 2006).

In Egypt rice is considered as the second cash-export crop after cotton. Some of the Egyptian rice varieties are susceptible to the rice blast fungal pathogen *Pyricularia grisea* and rice stem borers *Chilo agamemnon* Bleszynski. The rice cultivation area in Egypt is