Diagnostic and prognostic value of serum concentration of cardiac troponin I in severe congestive heart failure

Thesis submitted for partial fulfilment of Master degree in Cardiology

By Mohamed Abdel Aziz NoamanM.B.B.ch.

Under Supervision Of

Professor. Magdy Ahmed Ghareeb Professor of Cardiology

Ain Shams University

Doctor. Ayman Mortada Abdel Moteleb

Lecturer of Cardiology Ain Shams University

Ain Shams University Faculty of Medicine 2010 فائدة بروتينات التروبونين (I) من الناحيه التشخيصيه و تقدم الحالة المرضية لمرضى الفشل الاحتقائى الشديد في وظائف القلب رسالة مقدم توطئه للحصول على درجة الماجستير في أمراض القلب

من الطبيب / محمد عبد العزيز نعمان بكالوريوس الطب والجراحة

تحت إشراف الأستاذ الدكتور / مجدى احمد غريب أستاذ أمراض القلب والأوعية الدموية كلية الطب _ جامعة عين شمس

الدكتور/ أيمن مرتضى عبد المطلب مدرس أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

كلية الطب جامعة عين شمس 2010

Acknowledgement

First and foremost, Thanks to GOD

I would like to express my deepest gratitude and sincere thanks to **Prof. Magdy Ahmed Ghareeb**, professor of Cardiology, Faculty of Medicine, Ain-Shams University, for his instructive supervision, continuous guidance and valuable instructions.

I will never be able to express my deepest feelings and profound gratitude to **Dr. Ayman Mortada Abd-Elmoteleb**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for suggesting and planning the design of this work.

Finally, I would like to address my family especially my parents and my wife and thank them for their unlimited support and care.

CONTENTS	Page
List of figures	1
List of tables	3
List of abbreviations	4
Introduction	6
Aim of the work	11
Review of literature	12
Patients and methods	68
Results	77
Discussion	97
Conclusions	105
Summary	106
Limitation	109
Recommendations	110
References	111
Arabic summary	1

LIST OF FIGURES

No.	Title	Page
1	Gender distribution of heart failure	13
2	Age-specific lifetime risk of heart failure	14
3	Kaplan–Meier survival curve for incident heart failure cases	14
4	Frank-Starling curves	17
5	Frank-Starling low	17
6	Myocardial injury and renin-angiotensin- system	23
7	Chest x ray findings of acute heart failure	28
8	Chest x ray findings of chronic heart failure	28
9	Survival free from rehospitalisation for worsening heart Failure	68
10	Gender distribution of study population	79
11	NYHA class distribution in study population	81
12	Cause of heart failure in both group	82

13	Relation between troponin I heart rate on admission	85
14	Relation between troponin I and serum Na.	88
15	Relation between troponin I and serum creatnine	89
16	Troponin I and ejection fraction	90
17	Relation between troponin I and LVESD	91
18	Relation between troponin I and LVEDD	92
19	ROC carve for specifity and sensitivity of the cut off point	96
20	Mortality in group A and group B	98

LIST OF TABLES

No.	Title	Page
1	causes of heart failure	15
2	New York Heart Association Classification	25
3	demographic data of study population	78
4	demographic data of group A and group B	80
5	Cardiac troponin I and Ischemic versus Nonischemic HF	81
6	history of medical diseases in the group A and group B	83
7	clinical data in group A and group B	84
8	ECG finding in group A and group	86
9	laboratory finding in group A and group	87
10	ECHO finding In group A and group	90_89
11	diastolic function In group A and group B	92
12	In hospital treatment in group A and group B	94-93
13	Cardiac troponin I and Outcome	97

LIST OF ABBRRVIATIONS

ACE	Angiotensin converting enzyme
AF	Atrial fibrillation
AHF	Acute heart failure
ARBs	Angiotensin receptor blockers
BB	Beta blockers
BNP	Beta natriuretic peptide
CAD	Coronary artery disease
CCU	Cardiac Care Unit
CHF	Congestive heart failure
CRP	C_Reactive protein
cTnI	Cardiac troponin I
cTnT	Cardiac troponin T
DCM	Dilated cardiomyopathy
ECG	Electrocardiogram
EF	Ejection fraction

НСМ	Hypertrophic Cardiomyopathy
HF	Heart Failure.
H_FABP	Heart type fatty acid binding protein.
HR	Heart rate.
LAD	Left atrial diameter.
LVEDD	Left Ventricular End Diastolic Diameter
LVESD	Left Ventricular End Systolic Diameter
MI	Myocardial infarction
PKA	Protein kinase A
PKC	Protein kinase C
STEMI	ST segment elevated myocardial infarction
TEE	Transesophageal echocardiography
TEA	Transient ischemic attack
TSH	Thyroid stimulating hormone
TTE	Transthoracic echocardiography

Introduction

Heart failure (HF) is a condition in which a problem with the structure or function of the heart impairs its ability to supply sufficient blood flow to meet the body's needs Common causes of heart failure include myocardial infarction and other forms of ischemic heart disease, hypertension, valvular heart disease and cardiomyopathy. Heart failure can cause a large variety of symptoms such as shortness of breath, coughing, ankle swelling and reduced exercise capacity. (McMurray et al, 2005)

Heart failure is a common, costly, disabling and deadly condition. In developing countries, around 2% of adults suffer from heart failure, but in those over the age of 65, this increases to 6—10%. (**Dickstein et al, 2008**)

Heart failure is associated with significantly reduced physical and mental health, resulting in a markedly decreased quality of life. With the exception of heart failure caused by reversible conditions, the condition usually worsens over time. (Juenger et al, 2002)

The troponin proteins are found in cardiac and skeletal muscle tissue as products of separate genes. They are located in the myofibril, where they regulate the interaction of actin monomers with the myosin

heavy chain. The cAMP-dependent phosphorylation of troponin I at two adjacent serine residues in the amino-terminal of the molecule causes a decrease in the affinity of calcium for the calcium-binding troponin C and inhibition of actin-myosin interactions.

(Wattanapermpool et al, 1995)

Troponin I exist in three isoforms: slow skeletal, fast skeletal and cardiac muscle–specific isoforms. (Cummins et al, 1978)

The cardiac muscle isoform of troponin I is a 24-kD protein uniquely expressed in the adult human heart. It differs from the slow-twitch and fast-twitch skeletal muscle isoform in that (1) it possesses 31 additional amino-terminal residues and (2) the remaining amino acid sequence shows 40% dissimilarity from both the slow and fast skeletal muscle isoform. (Wilkinson et al, 1978)

Importantly, the skeletal muscle does not express cardiac troponin I throughout ontogeny, during regenerative muscle disease, or in response to pathological stimuli, which confers to the cardiac isoform absolute specificity for the myocardium. (Adams et al, 1993) and (Bodor et al, 1995)

A new-generation, highly sensitive immunoenzymoluminometric assay for quantitative determination of the cardiac muscle isoform of troponin I in human serum has recently been

developed. The assay operates at the picomolar concentration range and allows for the measurement of extremely low concentrations of cardiac troponin I. The lower limit of detection is 3 pg/mL. (**Setsuta et al, 1999**)

A fundamental hypothesis were been particularly interested; whether the use of an immunoassay with high analytical performance could provide evidence for cardiac troponin I release in congestive heart failure due to systolic dysfunction of the left ventricle, reflected in a severely compromised left ventricular ejection fraction. This hypothesis is consistent with a basic biological phenomenon in the failing human myocardium, namely, myofibrilolysis, and relates to the pathophysiology of congestive heart failure (**Setsuta et al, 2002**)

In the past decade, it has been recognized that elevated concentrations of cardiac troponin also are detectable in patients with HF in the absence of unstable coronary syndromes. In 1997, Missov and colleagues used a highly sensitive research assay to demonstrate elevated concentrations of troponin I in 35 patients with advanced HF. Subsequent reports extended these observations to troponin T. (Sato et al, 2002)

For instance, in a Japanese study, troponin T was detectable by a second-generation assay (detection limit, 0.02 ng/mL) in 30 of 58

patients (52%) with chronic HF compared with 4% of healthy control subjects. (Setsuta et al, 2002)

Cardiac cell death has been shown to occur in heart failure and has been implicated as one of the mechanisms responsible for progression of the disease. Cardiac Troponin I (cTnI) represents a highly sensitive marker for myocardial cell death. Based on previous studies reporting that cTnI may be detected in patients with heart failure, it was evaluated the clinical correlates and prognostic implications of detectable cTnI in a consecutive series of patients with severe heart failure. And it was suggested that cTnI is detected in the blood of 25% to 33% of patients with severe heart failure; its presence may help to identify a high-risk sub-group who faces very poor short-term prognosis. (Luigi et al, 2000)

Cardiac troponin I (cTnI), a sensitive and specific marker of myocardial cell injury, is useful in diagnosing and assessing prognosis in acute coronary syndromes. Small studies report that cTnI is elevated in severe heart failure and may predict adverse outcomes. (Tamara et al, 2003)

CTnI is associated with impaired haemodynamic, elevated BNP levels, and progressive left ventricular dysfunction in patients with HF. cTnI may be a novel, useful tool in identifying patients with HF

who are at increased risk for progressive ventricular dysfunction and death. (**Tamara et al, 2003**)

Aim of work

In this study we will evaluate the diagnostic and prognostic rule of serum concentration of cardiac troponin I in severe congestive heart failure.