ROLE OF MAGNETIC RESONANCE IMAGING IN EVALUATION OF NON-CENTRAL NERVOUS SYSTEM FETAL ANOMALIES

Essay Submitted for Partial Fulfillment for Master Degree in **Radio Diagnosis**

By Doaa Abd El Salam Mahmoud

M.B., B.Ch., Faculty of Medicine Tanta University

Under Supervised of

Prof. Dr. / Aida Mohamed El Shibiny

Prof. of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Prof.Dr./Maha Hussien Anwar Abdel Salam

Assistant Prof. of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

CONTENTS

Page No
Introduction 1
Aim of the Work3
Review of Literature4
Normal anatomy of relevant non-CNS fetal anomalies4
Pathology of non-CNS fetal anomalies24
MRI techniques of non-CNS fetal anomalies35
MRI manifestations of non-CNS fetal anomalies41
Summary79
Conclusion81
References82
Arabic summary

LIST OF FIGURES

Fig No.	Title Pa	age No.
Figure (1):	Normal lung anatomy	4
Figure (2):	Normal lungs in early- to midsecond trimester	5
Figure (3)	: Normal anatomy in a 35-week-old fetus as	
	shown on single-shot fast spin-echo MR	
	images	8
Figure (4):	Longitudinal section through a kidney to show	
	the normal macroscopic appearance notes the	
	pelvis of the ureter and its division into calyces	10
Figure (5):	The structural and functional organization of the	
	kidney	12
Figure (6)	: Normal anatomy in a 35-week-old fetus as	
	shown on T1-weighted fast spin-echo MR	
	images	13
Figure (7):	Normal kidneys. T2-weighted images at 18 (a),	
	21 (b), 24 (c), 29 (d), 32 (e), 35 (f) weeks	
	gestational age	14
Figure (8):	Normal urinary bladder. T2-weighted images at	
	18 (a), 21 (b), and 26 (c, d) weeks gestational	
	age	15
Figure (9):	Normal anatomy of GIT	16
Figure (10)	: MRI of normal genitourinary and	
	gastrointestinal systems in fetus at 22 weeks'	
	gestation	17

Fig No.	Title	Page No.
Figure (1	1): MRI of normal genitourinary and	d
	gastrointestinal systems in fetus at 30 weeks	; '
	gestation A, Axial T2-weighted image through	h
	level of bladder (B) shows increased signa	ıl
	intensity	19
Figure (12):	Normal liver. T2-weighted images at 14 (a), 1	8
	(b), 22 (c), 26 (d) 31 (e), and 32 (f) week	S
	gestational age and T1-weighted image at 3	2
	weeks (g)	22
Figure (13):	Normal thyroid in a 34-week-old fetus	
Figure (14)	: Changing appearance of congenital cysto)-
	adenoid malformation	42
Figure (15):	Bronchopulmonary sequestration in a 23-week	[-
	old fetus.	43
Figure (16):	: Left-sided CDH with liver in the chest at 2	1
	weeks gestational age	45
Figure (17):	Congenital diaphragmatic hernia in a 36-wee	k
	old fetus Coronal single-shot fast spin ech	0
	MR image shows the stomach (straight solid	d
	arrow), small intestine (open arrow), and color	
	(arrowhead) to the left of the mediastinum	

Fig No.	Title Page No.
Figure (18):	Pulmonary hypoplasia at 22 weeks gestational
	age in fetus with right-sided renal agenesis and
	left-sided multicystic dysplastic kidney.
	Coronal(a-c) and sagittal (d) T2-weighted
	images show theenlarged left kidney (K) with
	multiple cysts48
Figure (19):	Potter syndrome in a 34-week-old fetus49
Figure (20):	Gastroschisis in a 28 weeks old fetus51
Figure (21):	Omphalocele in a 35-week-old fetus52
Figure (22):	Hiatal hernia in a 31-week-old fetus53
Figure (23)	Duodenal atresia in a 35-week-old fetus54
Figure (24):	Small bowel atresia in a 31-week-old fetus56
Figure (25):	Small bowel atresia with meconium peritonitis
	in a 33-week-old fetus57
Figure (26):	Twin B secondary to small-bowel atresia58
Figure (27):	Case diagnosed as suspicious of fetal ovarian
	cyst or meconium pseudo cyst by US at 24 wks59
Figure (28)	: Ureteropelvic obstruction at 19 weeks
	gestational age61
Figure (29):	T2-weighted image obtained with single-shot
	fast spin-echo sequence in 25-gestational-
	week-old fetus with left ureteropelvic junction
	obstruction and retroperitoneal urinoma 62

Fig No.	Title	Page No.
Figure (30)	: 30-gestational-week-old female fetus wi	th
	duplicated right collecting system, which	is
	caused by second ureteral bud arising fro	m
	mesonephric duct	63
Figure (31):	Duplicated renal collecting system ar	nd
	ureterocele in a 34-week-old fetus	64
Figure (32):	Multicystic dysplastic kidney in a 34-week-o	ld
	fetus	65
Figure (33):	Cystic areas (arrows) are bright on coronal T	2-
	weighted image of 31-gestational-week-o	ld
	fetus with bilateral multicystic dysplast	ic
	kidneys	66
Figure (34)	: 34-gestational-week-old fetus with cloac	al
	exstrophy	67
Figure (35):	Sagittal T2-weighted MR image demonstrat	es
	a heterogeneous mass with cystic and sol	id
	components (arrowheads) extending from the	he
	mandible through the thoracic inlet (arrow	rs)
	into the superior mediastinum	69
Figure (36):	Goiter in a 30-week-old fetus	70
Figure (37):	(a) Sacrococcygeal teratoma in a 31-week-o	ld
	fetus	73

Fig No.	Title	Page No.
Figure (38): Sacroco	ccygeal teratoma in 25.5-weel	k fetus74
Figure (39): A 26-w	eek-old female fetus with an	extensive
lymphai	ngioma	76
Figure (40): Liver tur	mor at 28 weeks gestational a	ge77
Figure (41): Liver tu	mor (infantile hemangioendo	othelioma)
in a 40-	week-old fetus	78

I would like to begin by thanking God for his guidance and protection.

I would like to express my deep appreciation to **Prof. Dr. Aida Mohamed El Shibiny**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University., I am deeply affected by her noble, character, perfection, care and consideration.

Moreover I would like to express my sincere to **Prof. Dr. Maha Hussien Anwar Abdel Salam,** Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her supervision, help and valuable support and guidance,

Many thanks to my family for their great support to complete this work.

I convey my thanks to anyone who helped me to complete this work.

Doaa Abd El Salam Mahmoud

List of abbreviations

3D : Three Dimension

CDH : Congenital Diaphragmatic Hernia

FLASH : Fast Low Angle Shot

FOV : Field Of View.

GER : General Electric

GI : Gastro Intestinal.

HASTE: Half Fourier Acquisition Turbo Spine Echo

IVC : Inferior Vena Cava.

RARE : Rapid Acceleration With Relaxation Enhancement

SSFSE : Single Shot Fast Spine Echo

TE : Time Echo

TR : Time Repetition.

US : Ultra Sound

INTRODUCTION

Sonography is the primary technique for fetal imaging because of its proven utility, widespread, availability, and relatively low cost. However, limitations included a small field of view, limited soft-tissue contrast, beam attenuation by adipose tissue and poor image quality in oligohydraminos (Garel et al., 1998).

Accordinaly, sonographic findings are occasionally inconclusive or insufficient to guide treatment choices (*Sonigo* et al., 1998).

Over the past decade, fetal MRI has emerged as a clinically useful supplement to sonography and is rapidly moving from the realm of select academic medical centers into community practice. Advances in fetal medicine and surgery have also driven the development of fetal MRI (*Coakley et al.*, 2001).

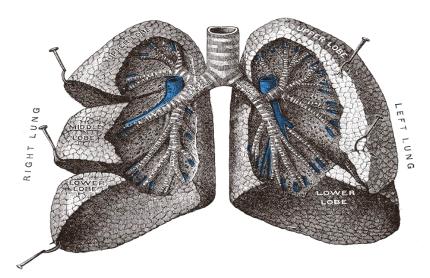
Fetal MRI has been increasingly used as an adjunct to sonography to provide secondary information regarding fetal anatomy, which may alter the antenatal diagnosis and management of the pregnancy (*Zaretsky et al.*, 2003).

It is particularly useful in evaluating the anatomic details of complex anomalies. The additional information beyond that obtained on fetal sonography can be useful for prenatal counseling, planning for delivery and planning for prenatal or postnatal intervention (*Cassrt et al.*, 2004).

The use of ultrafast scanning technique, such as singleshot fast spin-echo and HASTE sequences has allowed excellent resolution of fetal anatomy by reducing motion artifact (*Kubik-Huch et al.*, 2000).

Accordingly, accurate diagnosis of a fetal anomaly by MRI has the potential to improve parental counseling regarding prognosis and treatment options, assist clinicians with fetal postnatal management decisions and plan for delivery at an appropriate center for treating the diagnosed anomaly (*Richard et al.*, 2007).

AIM OF THE WORK


The objectives of this study are to evaluate the contribution of using MRI findings when assessing fetal neck, pulmonary, genitourinary, and abdominal anomalies, to determine how this procedure may affect the management of pregnancy.

NORMAL ANATOMY OF RELEVANT NON-CNS FETAL ANOMALIES.

Fetal lung

The lungs are described as having costal, mediastinal, apical and diaphragmatic surfaces. The right lung has three lobes and the left has two, with the lingual of the left upper lobe corresponding to the right middle lobe.

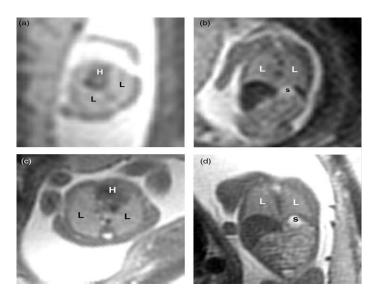

One terminal bronchiole with lung tissue forms an acinus which, together with vessels, lymphatic and nerves, forms the primary lobule. Three to five primary lobules form a secondary lobule (*Shinmoto et al.*, 2000)

Figure (1): Normal lung anatomy (*Gray's anatomy at Bartley web site 2005*),

Lung maturation and MRI anatomy

An important determinate of postnatal survival is the extent of lung development. The bronchi and bronchioles are developed by 16 to 20 weeks of gestational age with the appearance of a significant number of alveolar ducts and blood vessels by 24 weeks of gestation. The normal fetal lung is homogenous and has a moderately high signal intensity of T2 weighted images. With maturation of the lungs, the signal intensity of the lungs increases with increasing production of alveolar fluid (*Fig 2*) (*Hubbard et al.*, 2002).

Figure (2): Normal lungs in early- to midsecond trimester. Axial and coronal T₂-weighted images at 14 (a and b) and 18 (c and d) weeks gestational age show the lungs (L) and the heart (H). The pulmonary vasculature is difficult to assess at these early gestational ages. (*Hubbard et al.*, 2002)

Lung volume changes

Standards for normal lung volumes have been reported by MRI. With echo planar imaging showed exponential growth of the lungs with increasing gestational age. Another larger study using fast spin-echo T2 Weighted images showed that the normal fetal lung volume increased with age. There was constant relation between size of the right and left lungs throughout gestation, the volumes of normal lungs on MRI were 10 % less than volumes obtained on pathologic specimen. Other MR- related changes associated with increasing gestational age and maturation of the lungs are a progressive decrease in T1signal and an increase in T2signal. (*Shinmoto et al.*, 2000).

MR appearance of fetal lung

The fetal lung as seen by MRI has a quite distinct appearance. The characteristic shape facilitates its location, and where T2W sequences are employed has high signal intensity. This distinguishes the lungs from central low intensity area representing the fetal heart. Maturation of the lung commences around 24 weeks gestation (*Rypens et al.*, 2001).

As the lung develops there is increase in water content and a rise in the phospholipids concentrations that relate to surfactant production. This would result in a shortening of both the T1 and T2 relaxation times of the lung tissue.