

Developing of a Computer Program for Natural Gas Networks Design By KHALED IBRAHIM ABD EL-ALEEM ALI SALEM

A Thesis Submitted to the
Faculty of Engineering - Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
PETROLEUM and NATURAL GAS TECHNOLOGY

Developing of a Computer Program for Natural Gas Networks Design By

KHALED IBRAHIM ABD EL-ALEEM ALI SALEM

A Thesis Submitted to the
Faculty of Engineering - Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
PETROLEUM and NATURAL GAS TECHNOLOGY

Prof. Dr. Khaled Ahmed Abd El-Fatah

Prof. Dr. Ahmed Mohammed Kamel

Professor of Petroleum Engineering
Petroleum, Mining and Metallurgical
Engineering Department
Faculty of Engineering, Cairo University.

Prof. Dr. Ahmed Mohammed Kamel

Prof. Dr. Ahmed Mohammed Kamel

Professor of Electrical Power Engineering
Electrical Power
Engineering Department
Faculty of Engineering, Cairo University.

Under the Supervision of

Eng. Fathy Ibrahim Morgan

Consultant in WorleyParsons
for Petroleum Consulting

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Developing of a Computer Program for Natural Gas Networks Design By KHALED IBRAHIM ABD EL-ALEEM ALI SALEM

A Thesis Submitted to the
Faculty of Engineering - Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

PETROLEUM and NATURAL GAS TECHNOLOGY

Approved by the Examining Committee	
Prof. Dr. Khaled Ahmed Abd El-Fatah,	Thesis Main Advisor
Prof. Dr. Ahmed Mohammed Kamel,	Advisor
Eng. Fathy Ibrahim Morgan, Consultant in WorleyParsons for Petroleum Consulting.	Advisor
Prof. Dr. Ahmed Hamdi El-Banbi,	Internal Examiner
Eng. Gamal Mohammed Ali Badr Hassan. Former Chairman and Managing Director of SIANCO Co	External Examiner ompany.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Khaled Ibrahim Abd El-Aleem Ali Salem

Date of Birth: 28/4/1981 **Nationality:** Egyptian

E-mail: Khaled_ibrahim_11@yahoo.com

Phone: 01006679229

Address: Cairo, 15 May City, S (6), B (H), B (1), F (3)

Registration Date: 1 / 10 / 2012 **Awarding Date:** / / 2017 **Degree:** Master of Science

Department: Petroleum and Natural Gas Technology

Supervisors:

Prof. Dr. Khaled Ahmed Abd El-Fatah. Prof. Dr. Ahmed Mohammed Kamel.

Eng. Fathy Ibrahim Morgan. (WorleyParsons)

Examiners:

Eng. Gamal Mohammed Ali Badr Hassan.(External examiner,

SIANCO)

Porf. Dr. Ahmed Hamdi El-Banbi. (Internal examiner)
Porf. Dr. Khaled Ahmed Abd El-Fatah. (Thesis main advisor)

Prof. Dr. Ahmed Mohammed Kamel. (Advisor)

Eng. Fathy Ibrahim Morgan. (Advisor, WorleyParsons)

Title of Thesis:

Developing of a Computer Program for Natural Gas Networks Design

Key Words:

Natural Gas; Pipelines; Networks Design; GIS; MATLAB.

Summary:

The main aim of this thesis is developing of a computer program for natural gas networks design by using Arc-GIS and MATLAB programs, in order to unify the software which used of natural gas networks design in the petroleum sector companies which working in the field of natural gas delivery for the domestic, commercial and industrial building, to avoid the problems caused by the multiplicity of the computer programs which used in these companies, such as the difficulty of data exchange, data entry duplication and the impossibility of unification of the database.

Acknowledgments

This research work is an outcome of the cooperation protocol between the Egyptian Ministry of Petroleum and Cairo University, produced via the post graduate studies interdisciplinary program of "Petroleum and Natural Gas Engineering Technology" offered to engineers working in the Egyptian oil and gas sector.

At first, I thank God almighty who gave me the power to finalize this modest study.

And, I would like to express my deep thanks for Prof. Dr. Khaled Ahmed Abd El-Fatah, Prof. Dr. Ahmed Kamel and Eng. Fathy Morgan for their patience, understanding and supporting for me.

Special thanks to Prof. Dr. El-Sayed El-Tayeb and Prof. Dr. Sahar Mohamed El-Marsafy for keeping their door always open and to be there for assistance and help all the time, and their readiness to solve any problem encountered on my thesis.

Special thanks for Eng. Sharif Hadarah for his continuous supporting and encouraging for me.

Also, I would like to express my special thanks for Eng. Gamal Hassan (former chairman and managing director - SIANCO Company) for his continuous supporting and encouraging for me.

And, I would like to express my special thanks for Eng. Mohammed El-Sharbatly for his continuous helping for me.

Gratitude and appreciation to Town Gas Company, Egypt Gas Company and SIANCO Company for helping and providing the research team with the necessary data.

Finally, thanks for all my friends and all people whose I might have missed to acknowledge their efforts for helping me by directly or indirectly method to bring this work up to completion.

Dedication

Profound and deep thanks are dedicated to my father, my mother, my sister, my wife, my daughters, my uncle (Tarek Mohammed) and my precious family for their love, care, continuous support and endless encouragement.

Table of Contents

ACKN	OWLEDG	MENTS	I
DEDIC	CATION		II
TABL	E OF CON	TENTS	III
		S	
		ES	
NOME	ENCLATUI	RE	.VII
ABSTI	RACT		X
СНАР	TER 1: INT	FRODUCTION	1
СНАР		TERATURE REVIEW	
2.1.		UCTION	
2.2.		ANSMISSIONS AND DISTRIBUTIONS PIPING SYSTEM REVIEW	
2.3.	THE NET	TWORK DESIGN AND ANALYSIS REVIEW	6
2.4.		RATIVE METHODS REVIEW	
	2.4.1.	HARDY CROSS METHOD.	
	2.4.2.	LINEAR THEORY METHOD	11
	2.4.3.	NEWTON RAPHSON METHOD.	
	2.4.4.	OTHERS METHODS	
2.5.	THE DIF	FERENCE BETWEEN THE IDEAL GAS AND REAL GAS	17
	2.5.1.	IDEAL GAS.	
	2.5.2.	REAL GAS.	17
2.6.	THE DEV	ELOPMENT STAGES OF THE GAS FLOW EQUATIONS FOR THE PIPLINITY	ES
AND DIS	STRIBUTIONS	S	17
	2.6.1.	EQUATION OF STATE.	17
	2.6.2.	BERNOULLI EQUATION.	
	2.6.3.	DARCY-WEISBANCH EQUATION.	20
	2.6.4.	THE TRADITIONAL EQUATIONS.	21
	2.6.5.	FRICTION FACTOR.	22
	2.6.6.	AVERAGE PIPE PRESSURE .	23
	2.6.7.	GAS VELOCITY	23
2.7.	POPULA	R COMPUTER PROGRAMS FOR NETWORKS DESIGN AND ANALYSIS	24
2.8.	GEOGR <i>A</i>	APHICAL INFORMATION SYSTEM (GIS) REVIEW	25
	2.8.1.	ADVANTAGES OF GEOGRAPHICAL INFORMATION SYSTEM (GIS)	
	2.8.2.	GIS APPLICATIONS	
	2.8.3.	GIS APPLICATIONS IN NATURAL GAS FIELDS	
2.9.	MATLAI	B REVIEW	
	2.9.1	MATI AR CAPARII ITIES	26

CHAPT	ER 3: ST.	ATEMENT OF THE PROBLEM, OBJECTIVE AND	
METH (DOLOG	Y	28
3.1.	STATEM	MENT OF THE PROBLEM	28
3.2.		TVE	
3.3.	METHO	DOLOGY	29
СНАРТ	ER 4: MI	ETHODOLOGY IMPLEMENTATION	30
4.1.	CREATE	E THE SYSTEM FLOW DIAGRAM	30
4.2.		THE DATA COLLECTION	
4.3.		THE DATA ANALYSIS	
4.4.	CREATE	E THE SYSTEM DATABASE	36
	4.4.1.	SYSTEM DATA CAPABILITY	38
4.5.	CREATE	E THE QUERIES AND MACROS	38
4.6.	CREATE	E THE MODELING TOOL	38
	4.6.1.	MODELING TOOL ASSUMPTIONS.	39
	4.6.2.	NETWORK TOPOLOGY DESCRIPTION AND INPUTS DATA	39
	4.6.3.	THE DESIRED RESULTS FROM THE MODELING TOOL	42
	4.6.4.	NETWORK ANALYSIS LAWS	42
	4.6.5.	MODELING TOOL FLOW DIAGRAM	45
	4.6.6.	MODELING TOOL CAPABILITY	46
СНАРТ	ER 5: CA	SE STUDIES - RESULTS AND DISCUSSIONS	47
5.1.	THE FRI	IST CASE STUDY	47
5.2.	THE SEC	COND CASE STUDY	49
5.3.	THE TH	IRD CASE STUDY	51
5.4.	THE FO	URTH CASE STUDY	54
СНАРТ	ER 6: CC	ONCLUSIONS AND RECOMMENDATIONS	58
REFER	ENCES		59
APPEN	DIX A: P	&A SURVEY FORMS	61
APPEN	DIX B: Pl	IPES STANDARDS	67
APPEN	DIX C: P	ROPOSED P&A SURVEY FORMS	68
A PPFN	DIX D. C	ACE CTUDIES INDUTS	71

List of Tables

Table	Subject	Page
no.	Subject	no.
4.1	Program inputs.	35
4.2	Program outputs.	35
4.3	Process limitation in MATLAB program.	46
5.1	Flow rate results (case 1).	48
5.2	Velocity results (case 1).	48
5.3	Pressure results (case 1).	48
5.4	Pipes lengths (case 2).	49
5.5	Discharge nodes flow rates (case 2).	49
5.6	Flow rate results (case 2).	50
5.7	Velocity results (case 2).	51
5.8	Pressure results (case 2).	51
5.9	Pipes lengths (case 3)	51
5.10	Discharge nodes flow rates (case 3)	52
5.11	Flow rate results (case 3).	53
5.12	Velocity results (case 3).	53
5.13	Pressure results (case 3).	54
5.14	Discharge nodes flow rates (case 4).	54
5.15	Pipes lengths (case 4).	55
5.16	Flow rate results (case 4).	56
5.17	Velocity results (case 4).	56
5.18	Pressure results (case 4).	57
5.19	Percentage value of the sum square error related to the average of the flow rate.	57
5.20	Percentage value of the sum square error related to the average of the velocity	57
5.21	Percentage value of the sum square error related to the average of the pressure.	57
A.1	P&A survey for domestic customers (Town Gas Company).	61
A.2	P&A survey for commercial customers (Town Gas Company).	62
A.3	P&A survey for industrial customers (Town Gas Company).	63
A.4	P&A survey for domestic customers (SIANCO Company).	64
A.5	P&A survey for commercial and industrial customers (SIANCO Company).	65
A.6	P&A survey for domestic customers (Egypt Gas Company).	66
B.1	Polyethylene pipes outer and internal diameter (SDR 11).	67
B.2	Polyethylene pipes outer and internal diameter (SDR 17.6).	67
B.3	Steel pipes outer and internal diameter.	67
B.4	Polyethylene and steel pipes properties .	67
C.1	Proposed P&A survey for domestic customers	68
C.2	Proposed P&A survey for commercial customers	69
C.3	Proposed P&A survey for industrial customers	70

List of Figures

Figure	Subject	Page
no.	Subject	no.
1.1	The national grid of natural gas.	2
2.1	Gas transmission and distribution piping systems.	5
2.2	Solution of the equation $F(x)$.	13
2.3	Energy of fluid flow.	20
4.1	System flow diagram.	30
4.2	Followed scenario of any natural gas projects.	32
4.3	National Grid of Natural Gas structure.	34
4.4	Geo database from Arc GIS program.	36
4.5	Part of the Entity Relationship Diagram (ERD).	38
4.6	Modeling tool flow diagram.	45
5.1	Frist case study network topology.	47
5.2	Second case study network topology.	50
5.3	Third case study network topology.	52
5.4	Fourth case study network topology.	55

Nomenclature

[Δ P]	Pressure drop on pipes vector.
[µ]	Gas absolute viscosity vector.
[Ad]	Discharge nodes flow direction matrix.
[As]	Sources flow direction matrix.
[Di]	Pipes internal diameters vector.
[dnn]	Discharge nodes names vector.
[e]	Pipes efficiency vector.
[FE]	Flow equation vector.
[G]	Gas specific gravity vector.
[h21]	Elevations differences vector.
[L]	Pipes lengths vector.
[n]	Additional pipes in parallel vector.
[P]	Discharge nodes pressure vector.
[Pb]	Base pressure vector.
[pn]	Pipe name vector.
[Ps]	Sources pressures vector.
[Q]	Consumption flow rates vector.
[q]	Flow rate on pipes vector.
[Qs]	Flow rates of gas sources vector.
[R]	Pipes roughness vector.
[snn]	Sources names vector.
[T _{avg}]	Average temperature vector.
[Tb]	Base temperature vector.
[Ve]	Gas velocity on pipes vector.
[Visc.]	Gas absolute viscosity vector.
$\Delta \mathbf{P}$	Pressure drop, (psi)
μ	Gas absolute viscosity, (lbf·sec/ft²).
A	Cross section area, (in ²).
Acc.	Access.
AD	Attributes Data.
AGA	American Gas Association
C.R.N.	Customer Reference Number.
CNG	Compressed Natural Gas
CNGA	California Natural Gas Association
Com.	Commercial.
D	Pipe internal diameter, (in)
e	Pipeline efficiency, (dimensionless)
E _h	Elevation head, (ft)
ERD	Entity Relationship Diagram.
f	friction factor, (dimensionless)
FD	Fundamental pipe equation with constant friction factor.

FM	Fundamental pipe equation with variable friction factor.
G	Gas specific gravity, (dimensionless) (air = 1)
g	Gravitational constant, (ft/sec ²)
GD	Graphical Data.
GIS	Geographical Information System
GP	General pipe equation.
GPS	Global Positioning System.
GUI	Graphical User Interface.
$\mathbf{h_1}$	Upstream node elevation, (ft)
\mathbf{h}_2	Downstream node elevation, (ft)
$\mathbf{h}_{\mathbf{L}}$	Head losses, (ft)
ID	Inner Diameter.
IG	IGT distribution pipe equation.
Indus.	Industrial.
L	Pipe length, (mi)
LNG	Liquefied Natural Gas
$\mathbf{L}_{\mathbf{p}}$	Pipe length, (ft)
M.F.	Multi Family.
MATLAB	matrix laboratory
MTO	Material Take off.
MU	Muller pipe equation.
n	Number of additional pipes in parallel, (dimensionless)
N	The number of pipes, (dimensionless).
N.A.	No Access.
N.G.	No Gas.
NGNG	The National Grid of Natural Gas.
OD	Outer Diameter
P	Absolute pressure, (psia)
P&A survey	Property and Appliances survey.
P.R.S.	Pressure Reduction Station.
\mathbf{P}_{1}	Upstream node pressure, (psia)
\mathbf{P}_{2}	Downstream node pressure, (psia).
PA	Panhandle A pipe equation.
Pavg	Gas average pressure or average pipeline pressure, (psia)
P_{b}	Base pressure on the standard conditions, (psia).
PB	Panhandle B pipe equation.
P _c	Critical pressure of gas, (psia)
PE	Polyethylene
P _r	Reduced pressure, (dimensionless)
q	Flow rate in pipe, (ft³/day).
$\mathbf{q_h}$	Flow rate in pipe, (ft ³ /hr).
R	Universal gas constant, (10.73 psia ft3/lb mole °R)
R.G.	Refused Gas.
Re	Reynolds number, (dimensionless).
S	Number of sources nodes.

SL	Spitzglass low pressure pipe equation.
SP	Spitzglass high pressure pipe equation.
St	Steel
T	Absolute temperature of gas, (°R)
T_{avg}	Gas average temperature, (°R)
T_b	Base temperature on the standard conditions, (°R).
T_c	Critical temperature of gas, (°R)
T_{r}	Reduced Temperature, (dimensionless)
U.C.	Under Construction.
U.D.	Under Demolition.
V	Gas volume, (ft ³)
Vac.	Vacancy.
$\mathbf{V_e}$	velocity,(ft/sec)
WE	Weymouth pipe equation.
WT	Wall thickness of pipe, (in).
X	Number of pipes.
Y	Number of discharge nodes.
Z	Gas compressibility factor, or Gas deviation factor (dimensionless)
ρ	density, (lbm/ft ³)
$ ho_{ m r}$	Reduced density, (dimensionless)

Abstract

The National Grid of Natural Gas (NGNG) in Egypt is considered as one of the most complicated systems to be designed, operated, monitored and controlled especially during making any modifications to add new customers. Consequently, all the companies that working in the field of natural gas delivery to domestic, commercial and industrial buildings need a special computer programs to execute the planning process of its projects from the land survey step to the network design step.

It is well known that, there is a great and rapid development of such specialized programs, this leads to a rapid increase in the cost of licenses of using such programs. Meanwhile, the Egyptian companies still using commercial computer programs created by international entities, these programs are expensive and need a periodical update. In addition each company working in this field has its special package of programs which have its own format. So, it is impossible to assemble the data from all companies without missing some of them. Also, there is difficulty in data exchange when assigning work from one company to another, and a lot of data conversions are needed to transfer the data between the used programs from the land survey step to the network design step and this transfer must be done manually.

The main objective of this thesis work is overcome this problem by developing a new computer program for natural gas networks design. This program should be compatible with the execution system that used in the Egyptian companies and must be able to storage and collect all the land survey data, Property & Appliances (P&A) survey data and network data, and being compatible with Geographical Information System (GIS) program, it should be also being able to use the most important traditional flow equations such as Fundamental, Panhandle A, Panhandle B and Weymouth equations which used in the field of natural gas networks design and being also able to use the library of the MATLAB program.

The reliability of this new program was tested and approved through its use to solve four different case studies and comparing its results with the results obtained when using the most common commercial (SynerGEE) program in natural gas network design. The comparison showed a good match between the results obtained by the two programs when used to solve these four case studies.

Chapter 1: Introduction

Natural gas is the most important energy source in Egypt up to now because it is clean, environment friendly due to its low combustion emissions, safe source and considered as an economical source compared by the other fuels. So natural gas used as a fuel or raw material for many industries such as sets of chemical industry, cement industry, steel industry and used also as a domestic fuel.

Transporting the natural gas from oil and gas fields after processing to the cities and industrial places by safe and reliable way at low cost is considered as important goal, this goal can be achieved only by using pipeline and distribution networks.

The design and operation of such these distribution networks needs huge and tedious calculations which impossible to be done manually. So the only way to design these networks is to use computer programs. In the petroleum industry there are much ready-made commercial software that are used to design and operate the pipeline and distribution networks such as Pilot, Snap, PIPESIM and SynerGEE.

Actually, the Egyptian natural gas network is a huge network that is extends from Alexandria in the north to Aswan in the south and from Sinai in the east to Marsa Matrouh in the west and covered by more than 40000 km pipe network with different diameters. This national network feeds about 6.9 million domestic units, over than 14.5 thousand commercial units and over than 2.2 thousand industrial entities up to end of June 2015 and it is planned to extend this network more and more. So there are many companies that are working in the field of natural gas delivery to the Egyptian cities such as GASCO, EGYPT GAS, TWON GAS, SIANCO, REGAS, CAIRO GAS, etc.

All these companies use a commercial computer programs to survey, design and execute the process of extending the network to new cities or to new customers in the same city. The most commercial software programs in the industry are AutoCAD, Oracle, Microsoft Access, Microsoft Excel, Geo Media, ArcGIS and SynerGEE.

All these programs are not using to implement the same job but each program uses to execute one step from the planning steps of the execution process. AutoCAD program used to draw the data of land survey step, Oracle or Microsoft Access or Microsoft Excel used to store the customer data from P&A survey step, Geo Media or ArcGIS used to display the P&A survey data and drawing the network by dummy diameters on the land survey data and making the load file of the customers consumption to use it in the network design step by using SynerGEE program, after that need to back to Geo Media or Arc GIS to correct the pipes diameters of the network, all these steps to transport the data from one program to another program occur by manually ways and need to repeat all of these steps in case of any update in the P&A survey or land survey which requires great effort and time.