ASSESSMENT OF THE ROLE OF CAPSULE ENDOSCOPY IN MANAGEMENT OF OBSCURE GASTROINTESTINAL BLEEDING

Thesis
Submitted for partial fulfilment of the MD Degree
In Tropical Medicine

Tamer Mahmoud El-Tantawy El-Baz M.B.B.Ch, MSc

Supervised by

Prof. Dr. Mohammed Serag El-Din Zakaria

Professor of Tropical Medicine Faculty of Medicine, Cairo University

Prof. Dr. Magdy Amin El-Serafy

Professor of Tropical Medicine Faculty of Medicine, Cairo University

Dr. Iman Mohamed Hamza

Lecturer of Tropical Medicine Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2009

П

П

سورة المجادلة – أية 11

Acknowledgement

"He, and will always be, Allah who always blessed my work And who sent me those who were of help "

I would like to thank ALLAH a lot for his kindness, patience and strength he gave to me to achieve this work and made me able to finish it.

I am greatly honored to express my deep gratitude and faithfulness to **Prof. Mohamed Serag El-Din Zakaria**, Professor of Tropical Medicine, Cairo University. He gave me his valuable advices and support that cannot be expressed in words. His fatherhood attitude and encouragement were so supportive for the performance and completion of this work.

I am extremely grateful to **Prof. Magdy Amin El-Serafy**, Professor of Tropical Medicine, Cairo University for his sincere guidance and his help and support throughout the work. I learnt from him his perfectionism, his sacrification of work and many of his humanistic thoughts. To him therefore, I express my deep sense of gratitude.

My deep thanks and appreciation to **Dr. Iman Mohamed Hamza**, Lecturer of Tropical Medicine, Cairo University, for her strict supervision and revision of this work. She gave me much of her time, experience and support, her valuable comments, efforts and collaboration were the causes to complete this work properly, so no words can express my gratitude to her.

No words could express my thanks and gratitude to **Prof. Jan Bures**, **Prof. Stanislav Rejchrt and Dr Ilja Tacheci**, staff members of Hepatology and Gastroenterology, Charles University Hospital, Czech Republic. Without their help and support, this work would not have been performed. They were always there encouraging, helping and sacrifying a lot of their time in teaching me. It was a pleasure and a privilege to work besides them since my first steps in this field.

I express to **Prof. Mohamed Ramadan Baddar**, Professor of Internal Medicine, Ain Shams University and **Prof. Mohamed Shoukry Hunter**, Professor of Tropical Medicine, Cairo University, all my gratitude and respect for the value they added to this work by accepting its discussion. Once more, I feel very grateful to them for the time, effort and valuable advice they will offer during discussion of this thesis.

I would like to express my deep thanks to all the Professors and staff members of Tropical Medicine Department for their continuous help and support. My respect and appreciation to all of them.

A special dedication to my family for their never ending care. They attended the accomplishment of this work with a concern even greater than mine and they were always supporting me and encouraging me to continue and finish it.

TABLE OF CONTENTS	
	Pages
Introduction	1
Aim of work	3
Chapter one: Obscure Gastrointestinal Bleeding	4
• Definitions	4
Aetiology	7
• Clinical assessment	17
Investigations of obscure bleeding	19
Management of obscure bleeding	35
Outcome of obscure bleeding	44
<u>, </u>	
Chapter Two: Capsule Endoscopy	45
• Introduction	45
Technical principle	47
Safety and limitations	59
• Indications of capsule endoscopy: "Obscure gastrointestinal bleeding"	68
• Indications of capsule endoscopy: Other than obscure bleeding	79
Future prospects	89
Patients and Methods	100
Results	104
Atlas of our patients` findings	127
Discussion	134
Summary And Conclusions	145
Recommendations	
References	149

LIST OF TABLES

		Page
<i>Table (1):</i>	Types of obscure bleeding.	111
<i>Table (2):</i>	Demographic features of the patients .	111
<i>Table (3):</i>	List of previous investigations before capsule endoscopy.	112
<i>Table (4):</i>	Total time of capsule endoscopy and time needed to read it.	113
<i>Table</i> (5):	Incidence of completeness of capsule examination.	113
<i>Table</i> (6):	Capsule Endoscopy Transit Times.	114
<i>Table (7):</i>	Role of SBI (Suspected Blood Indicator).	114
<i>Table</i> (8):	Description of positive and potentially positive lesions.	115
<i>Table</i> (9):	List of incidental lesions of capsule endoscopies.	115
Table (10):	Inter observer agreement (IOA).	116
<i>Table (11):</i>	List of false positive and missed lesions.	116
Table (12):	List of complications and limitations.	117
Table (13):	Diagnostic yield of capsule endoscopy.	117
Table (14):	Clinical impact of capsule endoscopy.	118

		Page
Table (15):	List of findings by further investigations in comparison to type of bleeding and capsule findings.	119
Table (16):	Findings in previous investigations that were considered inefficiently diagnostic.	120
Table (17):	Impact of pre-capsule findings on positivity of capsule study.	120
Table (18):	Impact of presence of active bleeding on positivity of capsule study.	121

LIST OF FIGURES

		Page
Figure (1):	Types of obscure bleeding.	122
Figure (2):	Demographic features of the patients.	123
Figure (3):	Incidence of completeness of capsule examination.	124
Figure (4):	Role of SBI (Suspected Blood Indicator).	124
Figure (5):	Inter observer agreement (IOA).	124
Figure (6)	List of complications and limitations.	125
Figure (7):	Diagnostic yield of capsule endoscopy.	125
Figure (8):	Clinical impact of capsule endoscopy.	125
Figure (9):	List of previous investigations before capsule endoscopy.	126
Figure (10):	Impact of presence of active bleeding on positivity of capsule study.	126

LIST OF PICTURES

		Page
Picture (1):	Pill Cam SB capsule.	96
Picture (2):	Olympus Endocapsule.	96
Picture (3):	Capsule endoscopy system.	96
Picture (4):	Schematic diagram of capsule components.	97
Picture (5):	Interface of Olympus software.	97
Picture (6):	Interface of Given Rapid software.	98
Picture (7):	Pill Cam ESO capsule	98
Picture (8):	Patency capsule.	98
Picture (9):	Norika wireless capsule endoscope.	99
Picture (10):	EMILOC robotic capsule.	99
Picture (11):	Normal small intestinal mucosa (by Pill Cam capsule).	127
Picture (12):	Normal small intestinal mucosa (by Endocapsule).	127
Picture (13):	Methods of endoscopic capsule introduction (Mesh, Basket).	128
Picture (14):	Different forms of angiodysplasias.	128

		Page
Picture (15):	Single red spot.	129
Picture (16):	Different erosions seen in stomach and small intestine.	129
Picture (17):	Small intestinal ulcers.	130
Picture (18):	Ulcer complicated with lumen narrowing and stenosis.	130
Picture (19):	Ulcerated tumor (Later diagnosed as GIST tumor).	131
Picture (20):	Small intestinal varices.	131
Picture (21):	Phlebectasias.	131
Picture (22):	Cholesterol deposition (lymphangiectasias, xanthomas).	132
Picture (23):	Small polyp.	132
Picture (24):	Small submucosal lesion.	132
Picture (25):	Limited view (either due to dark altered blood or bubbles).	132
Picture (26):	False impression of presence of fresh blood.	133

LIST OF ABBREVIATIONS

5-HT4	5-hydroxytryptamine type-4
AIDS	Acquired Immunodeficency Syndrome
ASIC	Application Specific Integrated Circuit
AVM	Arteriovenous Malformation
CA 19-9	Cancer Antigen 19-9
CCD	Charge Coupled Device
CEA	CarcinoEmbryonic Antigen
CECDAI	Capsule Endoscopy Crohn's Disease Activity Index
CET	Cecal Entry Time
CETT	Capsule Endoscopy Transit Time
CMOS	Complementary Metal Oxide Semiconductor
CREST	Calcinosis, Raynaud's disease, Esophageal dysmotility,
	Syndactily, Telangiectasia
CT	Computed Tomography
CTA	Helical CT Angiography
	D 11 D 11 D .
DBE	Double Balloon Enteroscopy
DBE DCBE	Double Balloon Enteroscopy Double Contrast Barium Enema
DCBE	Double Contrast Barium Enema
DCBE DSP	Double Contrast Barium Enema digital signal processor
DCBE DSP ECG	Double Contrast Barium Enema digital signal processor Electro Cardiogram
DCBE DSP ECG	Double Contrast Barium Enema digital signal processor Electro Cardiogram
DCBE DSP ECG EGD	Double Contrast Barium Enema digital signal processor Electro Cardiogram Esophagogastroduodenoscopy "upper endoscopy"
DCBE DSP ECG EGD	Double Contrast Barium Enema digital signal processor Electro Cardiogram Esophagogastroduodenoscopy "upper endoscopy"

FJP	Familial Juvenile Polyposis
FOBT	Fecal Occult Blood Test
Fps	Frame per second
GAVE	Gastric Antral Vascular Ectasias
GI	Gastrointestinal
GIST	Gastrointestinal Stromal Tumor
GTT	Gastric Transit Time
GVHD	Graft Versus Host Disease
ICCE	International Conference on Capsule Endoscopy
IDA	Iron Deficiency Anemia
IMC	Intelligent Microsystem Center
INR	International Normalized Ratio
IOA	Interobserver Agreement
IOE	Intra Operative Enteroscopy
LEDs	Light Emitting Diodes
LTB	Likely to bleed
M2A	Mouth to Anus
MEMS	Micro Electro Mechanical Systems
MIS	Minimally Invasive Surgery
Nd:YAG	Neodymium:Yttrium-Aluminium-Garnet
NEMO	Nano-based capsule-Endoscopy with Molecular Imaging and
	Optical biopsy
NETs	Neuroendocrine tumors
NSAIDs	Non Steroidal Anti Inflammatory Drsugs
OGIB	Obscure Gastrointestinal Bleeding
PBSCT	Peripheral Blood Stem Cell Transplantation

PEG	Polyethylene Glycol
Pill Cam	Pill Cam Esophageal capsule
ESO	
Pill Cam SB	Pill Cam Small Bowel capsule
PJS	Peutz-Jeghers Syndrome
RBC	Red Blood Cell
RTAs	Regional Transit Abnormalities
SB	Small Bowel
SBFT	Small Bowel Follow Through
SBI	Suspected Blood Indicator
SBT	Small Bowel Transit
SBTT	Small Bowel Transit Time
SMA	Superelastic Shape Memory Alloy
SSRIs	Slow Serotonin Re-uptake Inhibitors
SSSA	Scuola Superiore Sant'Anna
TRBC	Technetium 99m-labeled Red Blood Cell
ULTB	Unlikely to bleed
VCE	Video Capsule Endoscope
VECTOR	Versatile Endoscopic Capsule for gastrointestinal Tumor Recognition and therapy

INTRODUCTION

Obscure gastrointestinal bleeding is defined as bleeding of unknown origin that persists or recurs (either recurrent or persistent iron deficiency anemia, fecal occult blood test positivity, or visible bleeding) after a negative initial or primary endoscopy (upper and/or lower gastrointestinal endoscopy) (**Pennazio et al, 2005**). This unidentified obscure bleeding represents 5% of gastrointestinal bleedings; with a unique, difficult and sometimes frustrating diagnostic challenge (**Bhasin and Rana, 2006**).

The source of bleeding is frequently located in the small intestine and includes angiodysplasias, neoplasms, enteropathy resulting from nonsteroidal anti inflammatory drug intake, Meckel's diverticulum associated ulcers as well as various inflammatory lesions. Still there are a proportion of missed lesions in the upper tract such as Cameron's erosions in large hiatal hernias, peptic ulcer disease and angiodysplasias. Similarly, missed lesions in colonoscopies include angiodysplasias and neoplasms (Leighton et al, 2003).

Several diagnostic tools, targeted to the small intestine, were applied with unsatisfactory results. Endoscopic examination of the small intestine is limited by its significant length and distance from accessible orifices (Mishkin et al, 2006). Till the end of the twentieth century, only indirect procedures using radiographic techniques or magnetic resonance techniques were available to provide rough imaging of the small bowel. These procedures were –and still are- used to detect large tumors, stenoses and fistulas. However, they do not allow direct intraluminal assessment of the mucosal situation. Nuclear medicine procedures, including radiographic angiography, also proved unsatisfactory, but in the absence of a better standard method were in widespread use in patients with suspicion of chronic or acute recurrent small bowel bleeding (Ell and May, 2006).

Therefore, the desire to explore this relatively inaccessible area led to the development of capsule endoscopy, an ingestible miniature camera providing visualization of the small bowel by transmitting images wirelessly from a disposable capsule to a data recorder worn by the patient. The Food and Drug Administration (FDA) approved the first

capsule in August 2000, and since that time, more than 250.000 capsules have been ingested (**Mishkin et al, 2006**).

The global diagnostic yield of the capsule endoscopy is about 65% (Van Tuyl et al, 2003). As capsule endoscopy has the ability to provide views for the whole small intestine, it rapidly acquired several indications such as evaluation of obscure gastrointestinal bleeding, patients with malabsorptive, inflammatory and infiltrative conditions, as well as surveillance of patients with hereditary intestinal polyposis (Viazis et al, 2005). Hence, in 2003, the FDA modified the previous labeling of the capsule endoscopy by removing its designation as an adjunctive tool and approving its use as a first line test (Gay et al, 2004).

Concerning its role in cases of obscure bleeding, a recent pooled analysis of seven prospective studies showed a capsule yield of 71% for identification of a source of bleeding compared to 29% for the push enteroscopy (**Melmed and Lo, 2005**). The detection rate of capsule endoscopy for this indication is dependent on the character of bleeding, with a higher detection rate in ongoing overt bleeding than in cases of heme positive stool and anemia and cases with prior overt bleeding (**Pennazio et al, 2004**).

This high diagnostic yield in cases of obscure bleeding led to additional several advantages such as possibility of earlier diagnosis, assistance in achieving effective decision making concerning subsequent management, and a lower overall health care utilization and costs (Pennazio et al, 2005).