Application of Biotechnology for Production of Recombinant Protein (Human Interferon Gamma)

Thesis

Submitted to faculty of Science Ain Shams University in partial fulfillment of M.Sc.

By

Hend Okasha Ahmed Ali

B.Sc. (Biochemistry-Chemistry)
2003

Under supervision of

Prof. Dr. Nadia Mohamed Abdallah

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Dr. Mohamed Ali Saber

Professor of Biochemistry Biochemistry Department Theodor Bilharz Research Institute

Ass. Prof. Dr. Eman M. Abd El-Azeem

Biochemistry Department Faculty of Science Ain Shams University

Declaration

I declare that this thesis has been composed by myself and that work of which it is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Hend Okasha Ahmed Ali

TO THE SOUL OF MY FATHER TO MY GREAT MOTHER

TO WHOM I OWED MY DEEPEST GRATITUDE

MY SISTER

MY UNCLES

MY FRIENDS

MY DEAR HUSBAND

&

MY LOVELY DAUGHTER

"Mariam"

CONTENTS

Subject	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
LIST OF ABBREVIATIONS	iii
LIST OF FIGURES	viii
LIST OF TABLES	XI
INTRODUCTION	1
AIM OF THE WORK	3
CHAPTER I	
REVIEW OF LITERATURE	4
1-Human interferon gamma	4
IFN-γ definition	4
IFN-γ gene and protein overview	4
IFN-γ secretion	9
Cellular effect of IFN-γ	11
IFN-γ and interleukins	13
IFN-γ signal transduction	15
Therapeutic uses of hIFN-γ	17
rhIFN-γ side effects	20
2-Recombinant DNA technology	21

3-Recombinant protein expression systems	25
CHAPTER II	
1-MATERIALS	36
2-METHODS	40
I- Separation and in vitro induction of hIFN- γ in	
cultured human peripheral blood mononuclear cells	40
(PBMCs)	
II- Isolation of hIFN-γ mRNA from induced human	42
PBMCs	
III- Molecular Cloning of hIFN-γ into TA cloning vector	45
IV-Subcloning of hIFN-γ into pET-15b expression	64
vector	04
V-Expression of hIFN-γ recombinant protein in pET-	65
15b Rosetta (DE3)	
VI- Immunodetection of expressed recombinant hIFN-γ	67
VII-Computer analysis	67
CHAPTER III	
RESULTS	68
CHAPTER IV	
DISCUSSION	85
SUMMARY AND CONCLUSION	96
REFERENCES	99
ARABIC SUMMARY	116
ARARIC ARSTRACT	

ACKNOWLEDGMENT

"First and foremost, thanks are due to Allah, the beneficent and merciful"

I wish to express my thanks and gratitude to *Prof. Dr. Nadia Mohamed Abdallah*, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her kind supervision, moral support, instructive guidance and kind advice.

I am greatly indebted to *Prof. Dr. Mohamed Ali Saber*, Professor of Biochemistry, Biochemistry Department, Theodor Bilharz Research Institute, for suggestion of the point of research and his kind supervision, his tremendous effort, and creative guidance. His intelligent remarks motivated me a lot to finish up this work. I owe my deepest thanks for his tutorial support in revision of all details of this thesis and his supervision throughout this work.

My deepest thanks and appreciation to *Dr. Eman M. Abd El-Azeem*, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her strong support, supervision and invaluable assistance in revision of this thesis.

This work has been supported by the grant of National strategy of biotechnology and genetic engineering, Ministry of scientific research, Egypt. Project contract agreement number 96 for year 2006.

I would like to thank the members of Biochemistry Department, Theodore Bilharz Research Institute for their assistance and support throughout the whole work.

Hend Okasha

ABSTRACT

Interferon gamma (IFN- γ), also called immune interferon, is chemically and pharmacologically distinct from IFN- α and IFN- β . It has weaker antiviral activity, more potent immunomodulator properties including macrophage activation, produced mainly by activated T-cells and natural killer.

IFN- γ is a drug used to reduce the frequency and severity of serious infections associated with chronic granulomatous disease (CGD) and delays the effects of osteopetrosis in patients with severe malignant forms. IFN- γ is currently in late stage of clinical trials in treatment of HCV and Leshmaniasis.

In this study hIFN- γ was induced and isolated from human Peripheral blood mononuclear cells (PBMC's), analyzed by digestion, sequencing and cloned in pCRII TOPO TA cloning vector to maintain its integrity.

The hIFN-γ ORF was sub-cloned in pET-15b expression vector and analyzed by PCR. The recombinant pET-15b/hIFN-γ vector was transformed into several expression bacterial strains and was successfully expressed using Isopropylthio -D-galactoside (IPTG) as an inducer in Rosetta (DE3) bacterial strain and tested by Western blot.

The results of this work indicate that the expressed recombinant protein is the hIFN-γ protein which confirmed by the molecular weight and the immunogenicity against the hIFN-γ antibodies.

LIST OF ABBREVIATIONS

a.a	Amino acid
Ab	Antibody
AD	Atopic dermatitis
ampR	Ampicillin resistance
APCs	Antigen presenting cells
Arg	Arginine
Asp	Aspartic acid
AMV	Avian myeloblastosis virus
BCGF	B-cell growth factor
ВНК	Baby hamster kidney
BLAST	Basic Local Alignment Search Tool
bp	Base pair
BSA	Bovine serum albumin
cDNA	Complementary deoxyribonucleic acid
cfu	Colony forming per unit
CGD	Chronic granulomatous disease
СНО	Chinese hamster ovary
Claudin1	CLDN1
CMV	Cytomegalovirus
DAB	3, 3'-Diaminobenzidine
DEPC	Diethylpyrocarbonate
DNA	Deoxribonucleic acid
dNTP	Deoxy nucleotide tri-phosphate

E. coli	Escherichia coli
FDA	Food and drug administration
EDTA	Ethyline diamine tetraacetate
FBSA	Fetal bovine serum albumin
FCS	Fetal calf serum
GAF	Gamma interferon activator factor
GAS	Gamma interferon activation site
Gln	Glutamine
Glu	Glutamic acid
Gly	Glycine
HBsAg	Hepatitis B surface antigen
HGH	Human growth hormone
hIFN-γ	Human interferon gamma
IBs	Inclusion bodies
IFN-α	Interferon alpha
IFN-β	Interferon beta
IFN-γR	Interferon gamma receptor
IFN-ω	Interferon omega
IFN-τ	Interferon tau
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IL	Interleukin
Ile	Isoleucine
IPTG	Isopropylthio -D-galactoside
IRF	Interferon transcription factor
ISGF	Interferon stimulated gene factor

ISRE	Interferon stimulated response element
JAK	Janus family kinase
KDa	Kilo-dalton
lac	Lactose utilization operon
LB medium	Luria-Bertani medium
Leu	Leucine
Lys	Lysine
MCS	Multiple cloning site
MHC	Major histocompatibility complex
MNC	Mononuclear cells
MOPS	3-[N-morpholino]propanesulfonic acid
mRNA	Messenger Ribonucleic Acid
MW	Molecular weight
NCBI	National Center for Biotechnology Information
NK	Natural killers
O.D	Optical density
ORF	Open reading frame
Ori	Origin of replication
OPC	Oropharyngeal candidiasis
PAGE	Polyacrylamide gel electrophoresis
PBMCs	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
PHA	Phytohemagglutinin
PGK	3phosphoglycerate kinase promoter
pL	Phage lambda promoter

PMN or	Polymorphonuclear leukocytes
PML	
PMSF	Phenyl methyl sulfoxide
PPD	Purified protein derivatives
Pro	Proline
PSI-BLAST	Position-specific iterated BLAST
PTPs	Protein tyrosine phosphatases
PVDF	Polyvinylidene flouride
RBS	Ribosomal binding site
RNA	Ribonucleic acid
rpm	Round per minute
RPMI	Roswell park Memorial institute
RT-PCR	Reverse transcription PCR
S. cerevisiae	Saccharomyces cerevisiae
SDS	Sodium dodecyl sulfate
SEA	Staphylococcus enterotoxin A
SEB	Staphylococcus enterotoxin B
SOC	Super optimal catabolic repression medium
Stat	Signal transducer and activator of transcription
STD	Standard for DNA
Ta	Annealing temperature
TAE	Tris-acetate DNA electrode buffer
TE	Tris EDTA buffer
TEMED	N, N, N`, N` –tetra-methylenediamine
Th	T helper cell
$T_{ m m}$	Melting temperature

TNF	Tumor necrosis factor
TPA	Tissue plasminogene activator
tRNA	Transfer Ribonucleic Acid

LIST OF FIGURES

Figure number		Page
Figure (1)	hIFN-γ gene in genomic location showing coding and non coding regions	4
Figure (2)	hIFN-γ cDNA sequence	5
Figure (3)	Amino acid sequence of hIFN-γ	6
Figure (4)	hIFN-γ homodimer glycoprotein structure	8
Figure (5)	Mode of action of Th1 in cell mediated immunity	10
Figure (6)	Cellular effect of IFN-γ in the immune system	11
Figure (7)	IFN-γ signaling pathway	16
Figure (8)	General procedure for cloning a DNA fragment in a plasmid vector and uptake of plasmids by <i>E. coli</i> cells	24
Figure (9)	The expression vector pET15-b	28
Figure (10)	pET15b cloning and expression region	28
Figure (11)	Expression of proteins using pET expression vectors in BL21 (DE3) bacteria	31
Figure (12)	Structural map of pCR II TOPO TA prokaryotic cloning vector	39
Figure (13)	Separation of PBMCs from whole blood using ficoll hypaque	40
Figure (14)	Alignment between hIFN-γ and cloning primers	46
Figure (15)	Restriction enzyme sites in hIFN-γ gene	49

Figure (16)	The TOPO cloning technology	54
Figure (17)	Agarose gel electrophoresis of total RNA isolated from <i>in-vitro</i> cultured PBMCs	69
Figure (18)	Agarose gel electrophoresis (3%) of RT-PCR products of RNA isolated from induced PBMCs culture	70
Figure (19)	PAGE of the <i>Hinf</i> I digestion fragments of the amplified PCR product	71
Figure (20)	Alignment of the DNA sequence of RT-PCR amplification product with reference sequence of hIFN- γ	72
Figure (21)	Electrophoresis on 0.7% agarose gel of plasmid DNA prepared by boiling method from 10 selected transformed colonies	73
Figure (22)	Electrophoresis on 3% agarose gel showing PCR amplification product of 10 plasmid preparations using cloning primers	74
Figure (23)	Electrophoresis on 1.5% agarose gel shows digested pCR II TOPO plasmid with <i>Nco</i> I and <i>BamH</i> I restriction enzymes	75
Figure (24a)	DNA sequence result of clone number 3 showing a total of 790 bp	76
Figure (24b)	Alignment of the DNA sequence of clone no.3 with reference sequence of hIFN-γ	77
Figure (25)	Electrophoresis on 1% agarose gel of both recombinant PCRII TOPO and pET-15b digested with <i>NcoI</i> and <i>BamHI</i> restriction enzymes	78

Figure (26)	Electrophoresis on 1% agarose gel of plasmid DNA prepared by boiling method for 6 selected transformed colonies	79
Figure (27)	Agarose gel electrophoresis 3% of PCR amplification product.	80
Figure (28)	Agarose gel electrophoresis (1.5%) shows digestion products of recombinant pET-15b plasmid with <i>NcoI</i> and <i>BamHI</i> restriction enzymes	81
Figure (29)	SDS-PAGE of the lysate of Rosetta DE3 cells, induced clones by IPTG	83
Figure (30)	Western blot analysis of induced recombinant hIFN-γ in Rosetta DE3 bacteria	84