THE ANTIMICROBIAL EFFECT OF SOME AROMATIC PLANT EXTRACTS ON Campylobacter spp. IN CHICKEN MEAT

 $\mathbf{B}\mathbf{v}$

ZAID AKRAM THABIT AL-RAWI

B.Sc. Agric. Sci. (Food Industries), Fac. Agric., Baghdad Univ., 2001 M.Sc. Agric. Sci. (Food Science and Biotechnology), Fac. Agric., Baghdad Univ., 2006

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Food Science)

Department of Food Science Faculty of Agriculture Cairo University EGYPT

2013

SUPERVISION SHEET

THE ANTIMICROBIAL EFFECT OF SOME AROMATIC PLANT EXTRACTS ON Campylobacter spp. IN CHICKEN MEAT

Ph.D. Thesis In Agric. Sci. (Food Science)

By

ZAID AKRAM THABIT AL-RAWI

B.Sc. Agric. Sci. (Food Industries), Fac. Agric., Baghdad Univ., 2001 M.Sc. Agric. Sci. (Food Science and Biotechnology), Fac. Agric., Baghdad Univ., 2006

SUPERVISION COMMITTEE

Dr. SALAH HUSSEIN ABOU-RAYA
Professor of Food Technology, Fac. Agric., Cairo University

Dr. AHMED TAWFIQ EL-AKEL
Professor of Food Technology, Fac. Agric., Cairo University

Dr. MOHAMMED ZAKARIA SEDIK Professor of Microbiology, Fac. Agric., Cairo University Name of Candidate: Zaid Akram Thabit Degree: Ph.D.

Title of Thesis: The Antimicrobial Effect of Some Aromatic Plant

Extracts on Campylobacter spp. in Chicken Meat.

Supervisors: Dr. Salah Hussein Abo-Raya

Dr. Ahmad Tawfiq El-Akel Dr. Mohammed Zakaria Sedik

Department: Food Science

Branch: Food Science Approval: 4/9/2013

ABSTRACT

This study was conducted to study the antimicrobial effects of garlic, mint, onion and turmeric extracts on Campylobacter spp. The presence of *Campylobacter* spp. was assessed from raw chicken at retail level and it was found in whole chicken in leg pieces part and was identified as Campylobacter jejuni. The mint essential oil (EO) extract gave the highest antimicrobial activity with inhibition zone (more than 20 mm) against C. jejuni. While, onion was giving active inhibition zone ranged between 16 to 19 mm. The lowest Minimal Inhibitory Concentration (MIC) value against C. jejuni was (0.01%) and (0.14%) for mint EO and onion extract, respectively. Mint EO was analyzed using a gas chromatography-mass spectrometry technique and Carvone (56.87%) presented the main component. Also guercetin and guercetin7-*O*-β-D-glucopyranoside were identified from onion ethyl acetate extract using NMR. The effect of Mint EO and onion extracts were tested in chicken leg meat stored at 4°C and -18°C inoculated with C. jejuni at a level of 10⁶ cfu/g meat. C. jejuni counts of untreated chicken leg meat were 2.14 (log cfu/g) after 7 days of storage. While C. jejuni counts of mint EO treated chicken leg meat were not detected after 7 days of storage at 4°C. Also C. jejuni counts of onion extract treated chicken leg were 1.3 (log cfu/g) after 7 days of storage at 4°C. Total aerobic and anaerobic microbial counts, yeast and mold as well as Salmonella spp. and Pseudomonas spp. were enumerated on chicken legs. Also thiobarbituric acid (TBA) value, pH value and total volatile basic nitrogen (TVBN) were measured. The results indicated that, addition of 2% of either mint EO or onion extract reduce Campylobacter jejuni counts as well as improve the microbiological and chemical quality that was extended the shelf-life of raw chicken leg meat.

Key words: *Campylobacter jejuni*, Chicken meat, Mint EO, Onion extract, Shelf-life.

DEDICATION

I would like to dedicate this work to my dear beloved parents, which their endless love have supported me and constantly empowered me to overcome difficulties and frustrations in my career. Whenever, I needed them, they were always there to patiently listen to me and give me encouragement, may Allah protect them. I also want to thank my sister, who has always encouraged and inspired me.

I would also like to dedicate this work to my lovely wife, who provides me with unlimited care; support and encouragement that I need to achieve my goal and success.

Lastly, I dedicate this work to my dearest children Rola and Ibrahim, who were patient and endured living in foreignness and suffered as a result of not spending sufficient time with them during the period of my study.

ACKNOWLEDGMENT

Deep thanks and appreciation to **Dr. Salah H. Abo-Raya**, Professor of Food Science and Technology, Faculty of Agriculture, Cairo University, for his endless encouragement, sincere help, his noble supervision, scientific advises, guidance through the study, and revision the manuscript of this thesis

I wish to express my sincere thanks and appreciation to **Dr.**Ahmed T. El-Akel, Professor of Food Science and Technology,
Faculty of Agriculture, Cairo University, for sharing in
supervision, sincere help and I ask God to give him Health and
Well-Being

Special thanks and appreciation to **Dr**, **Mohammed Zakaria** sedik. Professor of Microbiology, Faculty of Agriculture, Cairo University, for the continuous support of my PhD study and research, keen supervision, who taught me how to work with Campylobacter and helped me to develop a certain degree of discipline which is essential for a student of science, and revision the manuscript of this thesis.

Great and deepest thanks to **Dr, Sherif Mohamed Dessouki** Lecturer of Animal physiology Faculty of Agriculture, Cairo University, and his wife Ms. Shaima Mohammed for their assistance during my study and living in Egypt.

Special thanks are extended to **Dr**, **Mohamed Emad Eldeen Abdel-Aziz** and all staff members in Food Science and Technology Department, Faculty of Agriculture, Cairo University, for their help and support.

My sincere gratitude and appreciation goes to my dear colleagues and friends, who have assisted and supported me throughout the most rigorous phase of my research with their expertise, wisdom, and friendship.

LIST OF ABBREVIATIONS

UV Ultraviolet

AlCl3 Aluminum chloride

MeOH Methanol

NaOAc Sodium acetate

HCl Hydrochloric acid

DMSO dimethyl sulfoxide

h hour

°C Celsius

mm millimeter

ml milliliter

μl microliter

g Gram

w/v Weight per volume

v/v Volume per volume

min Minute

CFU Colony Forming Unit

GC/MS Gas chromatography/ mass spectrometry

TLC Thin layer chromatography

NMR Nuclear Magnetic Resonance

EO Essential oil

ESI-MS Electrospray Ionization/ Mass Spectrometry

NaOMe Sodium methoxide

mCCDA modified Charcoal Deoxycholate Agar

TVC Total Viable Count

DDW deionized distilled water

TBA Thiobarbituric acid

PCA Plate Count Agar

TCA trichloroacetic acid

TVBN Total volatile basic nitrogen

rpm Revolution per minute

nm Nanometer

N Nuclide

MIC Minimum Inhibitory Concentration

Hz Hertz

d doublet

dd doublet of doublets

J Indirect dipole dipole coupling

δ Chemical shift

ppm Part per million

 $+\Delta$ Difference in energy

R_f values Radio frequency

CoPC Caffeic acid

HOAc Acetic acid

BAW n-butanol-acetic acid-water

H₃BO₃ Boric acid

¹H Hydrogen

¹³C Carbon

CONTENTS

INTF	RODUCTION
REV	IEW OF LITERATURE
1. Cha	aracteristics of Campylobacter
a.	History and taxonomy of the family Campylobacteraceae
b.	Morphology and biochemical properties of Campylobacter
2. Isol	ation and Identification of Campylobacter
	Isolation of Campylobacter
b.	Identification of Campylobacter
3. Epi	demiology of Campylobacter
4. <i>Car</i>	npylobacter infection in humans
	npylobacter infection in poultry
	torical overview of medicinal plant
	ssification and Description of selected plant extract
	Garlic
	Description
	Active constitution.
	Antimicrobial effect
	Mint
	Description
	Active constitution.
	Antimicrobial effect
	Onion
	Description
	Active constitution
	Antimicrobial effect
	Turmeric
	Description
	Active constitution
	Antimicrobial effect
	ERIALS AND METHODS
	terials
	Sample collection
	thods
	Isolation and Identification
1.	Isolation method

2.	Identification method
	Preparation of plant extract.
1.	Garlic and Onion extraction
	Mint extraction.
3.	Turmeric extraction
c.	Antimicrobial assay
	Minimum Inhibitory Concentration.
e.	Preparation of successive extracts with selective organic solvents
f.	Identification of the compounds in the crude EO
g.	Identification of onion ethyl acetate extract using Nuclear
0	Magnetic Resonance (NMR) and ESI-MS spectroscopes
1.	Identification of Quercetin 7- <i>O</i> -β-D-glucopyranoside (A1)
	Identification of Quercetin (A2)
	Effect of mint and onion extract on the shelf-life of chicken
	Leg meat during refrigerated and freezing storage
1.	Preparation of sample
	Decontamination treatment with mint essential oil and
	onion extraction
a.	Enumeration of present microflora
	Determination of pH value
	Thiobarbituric acid (TBA) measurement
	Total volatile basic nitrogen (TVBN)
	Statistical analysis
	JLTS AND DISCUSSION
	ation and Identification
	imicrobial assay
	nimum Inhibitory Concentration (MIC)
	emical composition of mint (Mentha arvensis) essential oil
))
	aluation solvent type of onion fractionation extracts on
	npylobacter jejuni survival
	ntification of onion ethyl acetate extract Compounds by
	ng Nuclear magnetic resonance (NMR)
	contamination treatment with mint essential oil and onior
	raction
	Enumeration of <i>Campylobacter</i>
	Enumeration of total viable count
	Enumeration of Salmonella spp.
	II

d.	Enumeration of <i>Pseudomonas</i> spp	8'
e.	Enumeration of yeast and mold	9
8. Ch	emical analysis	93
	The pH value	93
	Thiobarbituric acid (TBA)	
c.	Total volatile bases nitrogen (TVB-N)	9
SUM	MARY	10
	ERENCES	10
ARAI	RIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Biochemical identification test for <i>Campylobacter</i> spp according to commercially available species differentiation kit (API CAMPY,bioMérieux, Marcyl'Etoile, France).	53
2.	Evaluation of antimicrobial activities of the prepared plant extracts against <i>Campylobacter jejuni</i>	55
3.	Main constituents of the essential oil for <i>Mentha arvensis</i> as identified by GC/MS analysis	58
4.	Evaluation solvent type of onion fractionation extracts on <i>Campylobacter jejuni</i> survival	59
5.	Campylobacter jejuni counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at 4°C.	74
6.	Campylobacter jejuni counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at -18°C.	76
7.	Total aerobic bacterial counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at 4°C	79
8.	Total aerobic bacterial counts enumerated in chicken legs $(x10^3 \text{ cfu/g})$ treated with mint EO and onion extract during storage at -18 $^{\circ}\text{C}$.	80
9.	Total anaerobic bacterial counts enumerate in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at 4°C	81

10.	Total anaerobic bacterial counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at -18 °C	83
11.	Total <i>Salmonella</i> spp. counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at 4°C	85
12.	Total <i>Salmonella</i> spp. counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at -18°C.	86
13.	Total <i>Pseudomonas</i> spp. counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at 4°C.	88
14.	Total <i>Pseudomonas</i> spp. counts enumerated in chicken legs (x10 ³ cfu/g) treated with mint EO and onion extract during storage at -18 °C	89
15.	Total yeast and mold counts enumerated in chicken legs $(x10^3 \text{ cfu/g})$ treated with mint EO and onion extract during storage at 4°C	91
16.	Total yeast and mold counts enumerated in chicken legs $(x10^3 \text{ cfu/g})$ treated with mint EO and onion extract during storage at -18 $^{\circ}\text{C}$.	92
17.	The pH values of chicken legs treated with mint EO and onion extract during refrigerated storage at 4° C for 7 days	94
18.	The pH values of chicken legs treated with mint EO and onion extract during freezing storage at -18 °C for 14 days	95

19.	TBA values (mg malonaldehyde/Kg) of chicken legs treated with mint EO and onion extract during refrigerated storage at 4°C for 7 days	0.=
	TBA values (mg malonaldehyde/Kg) of chicken legs	97
20.	treated with mint EO and onion extract during freezing storage at -18 °C for 14 days	98
21.	Total volatile bases nitrogen (mg/100 g) of chicken legs treated with mint EO and onion extract during refrigerated storage at 4° C for 7 days	100
22.	Total volatile bases nitrogen (mg/100 g) of chicken legs treated with mint EO and onion extract during freezing storage at -18 °C for 14 days	101

LIST OF FIGURES

No.	Title	Page
1.	Morphological properties of <i>Campylobacter jejuni</i> cultured on mCCDA examined by light microscope (X100) after 24 hours	53
2.	Biochemical identification test for <i>Campylobacter</i> spp according to commercially available species differentiation kit (API CAMPY,bioMérieux, Marcy-l'Etoile, France)	53
3.	Minimum inhibitory concentration (MIC) percentage of mint and onion extract on Campylobacter jejuni	56
4.	GC/MS chromatogram of mint (Mentha arvensis)	57
5.	Structure of quercetin 7- <i>O</i> -β-D-glucopyranoside	60
6.	¹ H NMR Spectroscopy for Quercetin 7-O-β-D-glucopyranoside.	63
7.	¹³ C NMR Spectroscopy for Quercetin 7-O-β-D-glucopyranoside	64
8.	ESI-Mass Spectroscopy for Quercetin 7-O-β-D-glucopyranoside.	65
9.	Structure of quercetin	66
10.	¹ H NMR Spectroscopy for Quercetin	68
11.	¹³ C NMR Spectroscopy for Quercetin	69
12.	ESI-Mass Spectroscopy for Quercetin	70

13.	Campylobacter jejuni counts enumerated in chicken leg treated with mint EO and onion extract during storage at 4°C	74
14.	Campylobacter jejuni counts enumerated in chicken leg treated with mint EO and onion extract during storage at -	75