Serum level of 25-Hydroxycholecalciferol in patients with Primary Osteoarthritis and Correlation with Disease Severity

Thesis

Submitted in Partial Fulfillment of Master Degree in Physical Medicine, Rheumatology and Rehabilitation

By
Thoraya Mohammed El-bayoumi Mohammed *M.B., B.Ch.*Faculty of Medicine Ain Shams University

Under supervision of

Prof. Dr. Nadia Abdul-salam Elkadery

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine Ain Shams University

Prof. Dr. Mona Lotefy Attia Zamzam

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine Ain Shams University

Dr. Nevine Mahmoud Fouda

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First and foremost, thanks are to **Allah**, the creator of the heavens and the earth and what's between them, to Him, whose knowledge is beyond all knowledge, for blessing this work until it has reached its end, as a part of His generous help throughout my life...

I am greatly honored to express my utmost thanks to **Prof. Dr. Nadia Abdul-salam Elkadery** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University for her constructive supervision, generous guidance & giving me such an honor to work under her supervision.

I would like to express my sincere gratitude & appreciations to **Prof. Dr. Mona Lotefy Attia Zamzam** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University for her close supervision, continuous help and the tremendous effect she has done in the meticulous revision of the whole work.

I am also greatly indebted to **Dr. Nevine Mahmoud Fouda** Assistant Professor of Physical Medicine, Rheumatology
and Rehabilitation, Faculty of Medicine, Ain Shams University
from whom I received faithful supervision, valuable suggestions
and continuous guidance throughout this work.

I want to dedicate this work to my father soul (may god bless him) and I sincerely acknowledge the help and encouragement from my beloved mother and sisters and special thanks to my husband for his endless assistance and enthusiastic encouragement.

Finally yet importantly, I would like to express my endless gratitude to my dear patients for their kind cooperation in accomplishing my work, wishing them a good health.

Thoraya Mohammed El-bayoumi

Contents

Page
List of Abbreviations
List of Tables
List of Figures
Introduction1
Aim of the work5
Review of Literature:
• Knee joint6
 Knee Osteoarthritis17
• Vitamin D79
 Role of vitamin D in primary knee
osteoarthritis118
Patients and Methods122
Results135
Discussion 159
Summary and Conclusion171
Recommendations175
References176
Appendix234
Arabic Summary

List of Abbreviations

Abbreviations	Meaning
1,25(OH) ₂ D ₃	1-alpha, 25-dihydroxycholecalciferol
25(OH)D ₃	25-Hydroxycholecalciferol
CYP27B1	25-hydroxycholecalciferol 1-alpha-
	hydroxylase
CYP24A1	25-hydroxycholecalciferol-24-hydroxylase
CYP27A1	25-hydroxycholecalciferol-25-hydroxylase
ADAMTS	A Disintegrin And Metalloprotease with
	Thrombospondin motifs
Abs.	Absent
ALK1	Activin-Like Kinase 1
AGEs	Advanced Glycation End
ACR	American College of Rheumatology
ACL	Anterior Cruciate Ligament
BMI	Body Mass Index
BMD	Bone Mineral Density
BMPs	Bone Morphogenetic Proteins
CGRP	Calcitonin Gene-Related Peptide
Ca	Calcium
CACP	Camptodactyly-Arthropathy-Coxa vara-
	Pericarditis
CV	Cardiovascular
COMP	Cartilage Oligomeric Matrix Protein
CNS	Central Nervous System
COL	Collagen
CBC	Complete blood counts
COX	Cyclooxygenases
DC	Dendritic cells

DMOAD	Disease-modifying OA drug
DEXA	Dual Energy X-ray Absorptiometry
ESR	Erythrocyte Sedimentation Rate
ECM	Extracellular matrix
FGF23	Fibroblast Growth Factor 23
GI	Gastrointestinal
HNF4α	Hepatic Nuclear Factor 4 alpha
HS	Highly significant
HA	Hyaluronic Acid
IGFs	Insulin-like Growth Factors
IFN-γ	Interferon-gamma
IL-1R	Interleukin-1 Receptor
IL-1Ra	Interleukin-1 Receptor antagonist
IL-1 α and β	Interleukin-1alpha and beta
IU	International Unit
K-L	Kellgren-Lawrence Grading System
kDa	kilo Daltons
LIF	Leukemic inhibitory factor
LIF-R	Leukemic inhibitory factor receptor
MRI	Magnetic Resonance Imaging
MHC	Major Histocompatibility Complex
MMP	Matrix Metalloproteinase
MSC	Mesenchymal Stem Cell
MSM	Methylsulfonylmethane
mcg (µg)	Micrograms
μmol/L	Micromoles/Litre
mg/mL	Milligram/millilitre
ng/ml	Nanograms/millilitre
nmol/L	Nanomoles/Litre

NIAMS	National Institute of Arthritis and					
	Musculoskeletal and Skin Diseases					
NO	Nitric Oxide					
NOS	NO synthases					
NS	Non-significant					
NSAIDs	Nonsteroidal Anti-inflammatory Drugs					
N	Number					
OA	Osteoarthritis					
OATS	Osteoarticular Transplant Surgery					
PTH	Parathyroid hormone					
PPAR γ and α	Peroxisome Proliferator-Activated Receptor Gamma and Alpha					
PXR	Pregnane X receptor					
Pres	Present					
PGES	Prostaglandin E synthase					
PGE-2	Prostaglandin E-2					
PKC	Protein kinase C					
PGs	Proteoglycans					
ROA	Radiographic Osteoarthritis					
RXR	Retinoic X receptor					
RA	Rheumatoid Arthritis					
SAMe	S-adenosylmethionine					
S (Sig.)	Significant					
SHP	Small Heterodimer Partner					
SD	Standard Deviation					
STZ	Superficial Tangential zone					
TMB	Tetramethylbenzidine					
TIMP	Tissue Inhibitor of Metalloproteinases					
TGF-ß	Transforming Growth Factor-ß					
TNF-α	Tumor Necrotic Factor alpha					

TNFsR	Tumor Necrotic Factor soluble receptor						
TACE	Tumor Necrotic Factor-α Convertase Enzyme						
TNF-R	Tumor Necrotic Factor-α Receptor						
UVB	Ultraviolet-B						
VEGF	Vascular Endothelial Growth Factor						
VLDL	Very-low-density lipoprotein						
VAS	Visual analogue scale						
VDBP	Vitamin D Binding Protein						
VDR	vitamin D receptor						
VDRE	Vitamin D Response Element						
WOMAC	Western Ontario and McMaster Universities						
	Osteoarthritis Index						
WHO	World Health Organization						

List of Tables

Table No.	Page						
Table (1):	Synovial fluid analysis43						
Table (2):	Criteria for diagnosis of Primary Knee Osteoarthritis						
Table (3):	Descriptive data for the studied cases						
Table (4):	Distribution of OA patients as regards their age						
Table (5):	Distribution of OA patients as regards the disease duration						
Table (6):	Descriptive data for clinical assessment139						
Table (7):	Comparison between the three groups of patients regarding age, disease duration, VAS and WOMAC score						
Table (8):	Comparison between patients with different X-ray grading regarding vitamin D level147						
Table (9):	Comparison between patients with different X-ray grades and other variables						
Table (10):	Relation between patients with and without analgesic inflammation effusion muscle						

	weakness and ligament laxity regarding vitamin D level
Table (11):	Comparison between patients with and without effusion regarding other variables151
Table (12):	Comparison between patients with and without muscle weakness and patients with and without ligament laxation regarding other variables 152
Table (13):	Comparison between patients with and without Analgesics regarding other variables153
Table (14):	Correlations between Vitamin D concentrations and other variables

List of Figures

Figure No.	•	Page
Figure (1):	Show normal anatomical structure of the synovial joint	
Figure (2):	Show normal histological structure of the articular cartilage	
Figure (3):	Show zones of the articular cartilage	11
Figure (4):	Plain X ray knee anteroposterior and lateral views demonstrate a normal knee	
Figure (5):	Plain X ray bilateral knees anteroposterior view demonstrates bilateral primary knees OA classified as Kellgren-Lawrence grade I	
Figure (6):	Plain X ray bilateral knees anteroposterior view demonstrates bilateral primary knees OA classified as Kellgren-Lawrence grade II	
Figure (7):	Plain X ray bilateral knees anteroposterior view demonstrates bilateral primary knees OA classified as Kellgren-Lawrence grade III	

Figure (8):	Plain X ray bilateral knees anteroposterior view demonstrates bilateral primary knees OA classified as Kellgren-Lawrence grade IV
Figure (9):	T2-weighted MR image, sagittal view, with synovitis (grade II) in infrapatellar region49
Figure (10):	MR image showing primary knee OA with full thickness loss of the medial femur cartilage
Figure (11):	Showing grade II Bone marrow edema in medial tibial and femoral condyles and grade I edema in lateral tibial and femoral condyles
Figure (12):	Showing grade II Osteophyte in medial femoral condyle and grade I Osteophyte in lateral femoral and medial tibial
Figure (13):	Showing joint effusion and Baker's cyst51
Figure (14):	Show chemical structure difference between steroid horn, vitamin D_2 and vitamin D_3 80, 81
Figure (15):	Show vitamin D ₃ synthesis from 7-Dehydrocholesterol in the skin by UVB radiation

Figure (16):	Show vitamin D ₃ synthesis, metabolism and catabolism	91
Figure (17):	Show release and physiological role of Parathyroid hormone	94
Figure (18):	Visual analogue scale (0-10)	125
Figure (19):	Distribution of OA patients as regards their age	136
Figure (20):	Distribution of OA patients as regards the disease duration	138
Figure (21):	Descriptive data for clinical assessment	140
Figure (22):	Descriptive data for studied cases in three different groups of serum level of vitamin D	141
Figure (23):	Disease duration distributed according to Vitamin D sufficiency	143
Figure (24):	VAS distributed according to Vitamin D sufficiency	144
Figure (25):	WOMAC score distributed according to Vitamin D sufficiency	145
Figure (26):	Descriptive data for radiological assessment	146
Figure (27):	Vitamin D levels distributed according to different x-ray grades	148

Figure (28):	Correlation	between	vitamin	D	levels	and	
	disease dura	tion	•••••	••••	•••••	•••••	.155
Figure (29):	Correlation VAS for pai						.156
Figure (30):	Correlation Grades of X						.157
Figure (31):	Correlation WOMAC so						.158

Introduction

Osteoarthritis (OA) is a chronic degenerative disorder characterized by cartilage loss, its prevalence is high, and it is a major cause of disability. The cause of OA is unknown; however, current evidence indicates that it is multifactor. Major risk factors for OA are age, female sex, obesity, geographic factors, occupational knee-bending, physical labour, genetic factors, race, and joint trauma; it causes joint pain, stiffness, and limitation of joint function. Knee involvement is the commonest presentation of this disease all over the world (*Das and Farooqi, 2008*).

OA is a disorder of the whole synovial joint organ. There is growing evidence of the importance of bone turnover in OA and human studies have demonstrated that the subchondral bone is metabolically active in OA (*Hunter et al., 2003*). Diagnosis is usually done by X-rays, which include loss of cartilage, subchondral sclerosis, subchondral cysts, narrowing of the joint space, and bone spur formation (osteophytes) from increased bone turnover (*Altman, et al., 1990*).

Vitamin D is a fat-soluble vitamin that is essential for maintaining normal calcium metabolism. Vitamin D₃ (cholecalciferol) can be synthesized by humans in the skin upon exposure to ultraviolet-B (UVB) radiation from sunlight, or it can be obtained from the diet (National Institutes of Health,