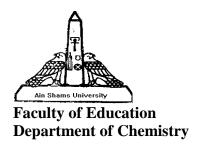


A THESIS ENTITLED

Synthesis of Some New Heterocyclic Compounds of Expected Biological Activity

Submitted by


Osama Farouk Mohamed Ibrahim

B.Sc & Ed.

For the degree of

Master of Teacher's Preparation in Science (Organic Chemistry)

Department of Chemistry Faculty of Education Ain Shams University Cairo

A THESIS ENTITLED

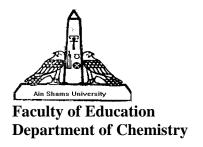
Synthesis of Some New Heterocyclic Compounds of Expected Biological Activity

By

Osama Farouk Mohamed Ibrahim B.Sc. 2005

Under the supervision of:

1-Prof. Dr. Magdy Hamed El-Metwally Seada


Professor of Organic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

2- Prof. Dr. Mohamed Abdel-Megid Abdel-Hamid

Professor of Organic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

3- Dr. Azza Mohamed Mohamed El-Kazak

Lecturer of Organic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University.

Approval Sheet:

Name Candidate: Osama Farouk Mohamed Ibrahin	n
Degree: M.Sc. Degree for Teacher's Preparation in Scientific (Organic Chemistry)	nce
Thesis Title: Synthesis of Some New Heterocyclic Compe Expected Biological Activity	ounds of
This thesis has been approved by:	Approved
Prof. Dr. Magdy Hamed El-Metwally Seada	
Prof. Dr. Mohamed Abdel-Megid Abdel-Hamid	
Dr. Azza Mohamed Mohamed El-Kazak	•••••

Head of Chemistry Department, Faculty of Education, Ain Shams University

Prof. Dr. Saied Khalil

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Prof. Dr. Magdy Hamed El-Metwally Seada, Prof. Dr. Mohamed Abdel-Megid Abdel-Hamid and Dr. Azza Mohamed Mohamed El-Kazak, Department of Chemistry, Faculty of Education, Ain Shams University, for the defining and directing this study and their supervision, encouragement and involvement assured significant conclusions.

I do much thanks to Prof. Dr. S. Labib, the pervious Head of Chemistry Department, Faculty of Education, Ain Shams University, for his kind valuable help during the course of research work.

I am particularly gratitude to Prof. Dr. S. Khalil, Head of Chemistry Department, Faculty of Education, Ain Shams University, for facilities provided and his valuable help during the course of research work.

CONTENTS

Abstract

Summary of the Original Work

General Part	
Introduction	1
*Synthesis of furopyrimidines	1
1- From furan derivatives	1
1.1- With formamide	2
1.2- With nitrile compounds	5
1.3- With orthoethers	7
1.4- With isothiocyanates	10
1.5- With acid halide derivatives	11
1.6- With formic acid	13
1.7- With acid anhydride	13
1.8- With thiourea derivatives	14
1.9- With miscellaneous reagents	15
2- From pyrimidine derivatives	16
2.1- From uracil and thiouracil derivatives	16
2.2- From barbituric and thiobarbituric acid derivatives	22
2.3- From other pyrimidine derivatives	26
*Reactions of furopyrimidines	34
1- Reactions attributed to furan ring	34
1.1- Reactions at furan carbons	34
1.1.1- Halogenation	34
1.1.2- Effect of thiols	36
1.1.3- Diels-Alder reaction	38
1.1.4- Addition reaction	38
1.2- Reactions of furan side chain	39
1.2.1- Reactions of chloromethyl function	39

1.2.2- Reactions of carboxylic acids and their esters	42
1.2.3- Reactions of amino group	46
1.2.4- Reduction	49
1.3- Ring opening reactions of furan ring	50
2- Reactions attributed to pyrimidine ring	53
2.1- Ring opening reactions of pyrimidine ring	53
2.2- Reactions of oxo- and thioxopyrimidines	54
2.2.1- Chlorination	54
2.2.2- Alkylation	56
2.3- Reactions of aminopyrimidine derivatives	57
2.3.1- Vicinal aminoimino derivatives	57
2.3.2- 4-Hydrazino derivatives	62
2.3.3- Aminopyrimidines	63
2.4- Substitution reactions	65
*Spectroscopic characterization of furopyrimidines	68
- Ultraviolet Spectra	68
- Infrared Spectra	69
- Proton NMR Spectra	70
- ¹³ C-NMR Spectra	71
- Mass Spectrometry	72
- X-ray Diffraction	73
*Application of furopyrimidines	75
Original work results and discussion	78
Synthesis of 5,6-diphenylfuro[2,3- d]pyrimidine-2,4(1 H ,3 H)-dithione (2)	78
I- Synthesis and Reactions of 4-hydrazino-5,6-diphenylfuro[2,3-d]-	
pyrimidine-2(1 <i>H</i>)-thione (3)	80
(a) Formation of pyrazolylfuropyrimidinethiones	80
a.1- Reactions of compound 3 with 1,3-dicarbonyl compounds	81
a.2- Reaction of compound 3 with arylidenecyanoacetamide	82
a.3- Reaction of compound 3 with some enaminones	84
(b) Formation of furotriazolopyrimidinethiones	89
b.1- Reaction of compound 3 with benzoyl chloride	89
b.2- Reaction of compound 3 with aldehyde and ketone	90

b.3- Action of carbon disulphide on compound 3	92
(c) Formation of furotetrazolopyrimidinethione and bistetrazolofuro-	
pyrimidines	92
II- Synthesis and Reactions of 2-(4-chlorobenzylidene-amino)-4,5-di-	
phenylfuran-3-carbonitrile (27)	95
(a) Synthesis of compound 27	95
(b) Reactions of compound 27 with hydrazine hydrate	95
(c) Some Reactions with 2-[$lpha$ -(4-chlorophenyl)- $lpha$ -hydrazino]methyl-	
amino-4,5-diphenylfuran-3-carbonitrile (30)	96
c.1- Effect of Triethylorthoformate on compound 30	97
c.2- Action of benzoyl chloride and aromatic aldehyde on compound 30	98
c.3- Reaction of compound 30 with carbon disulphide	100
c.4- Reaction of compound 30 with diethyl oxalate	101
(d) Reaction of compound 27 with benzoic acidhydrazide	102
(e) Effect of thioglycollic acid on compound 27	103
III- Synthesis and reactions of 2-(6-methyl-4-oxochromen-3-yl)methyl-	
ideneamino-4,5-diphenylfuran-3-carbonitrile (48)	105
(a) Effect of hydrazines on compound 48	106
(b) Effect of hydroxylamine on compound 48	108
(c) Effect of urea and thiourea on compound 48	109
Conclusions	110
Experimental	111
References	120

Arabic Summary

CHEMISTRY OF FUROPYRIMIDINES

INTRODUCTION:

There are three fundamental furopyrimidine systems. They are furo[2,3-d] pyrimidine (I), furo[3,2-d]pyrimidine (II) and furo[3,4-d]pyrimidine (III) according to the following presentation.

Furopyrimidines have been known for many years and have been thoroughly examined in the latter years.

SYNTHESIS OF FUROPYRIMIDINES

The building of furopyrimidine moiety has been achieved either by construction of pyrimidine nucleus on the parent furan ring or construction of furan nucleus on the parent pyrimidine ring.

1- From Furan derivatives

The simple approach to a new pyrimidine ring involves introducing a onecarbon fragment between two suitable and vicinal functional groups in furan rings.

1.1- With formamide

Formamide reacted with vicinal aminocyano, vicinal acylamino and vicinal aminoester furans to yield the target furopyrimidines. Therefore, treatment of 2-amino-5-arylfuran-3-carbonitrile derivatives (1) with formamide yielded 4-amino-6-arylfuro[2,3-d]pyrimidine derivatives (2)¹.

$$\begin{array}{c|c} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

 $R = 3,4-Cl_2, 3-CONH_2, 3-CONMe_2,3-NHSO_2Me, 4-OMe$

In similar manner, cyclization of 2-amino-5-substituted furan-3-carbonitrile derivatives (3i-v) with formamide gave 4-amino-6-substituted furo [2,3-d] pyrimidines (4i-v)².

(i)
$$R^1 = OCH_3$$
; (ii) $R^1 = H$; (iii) $R^1 = CI$
(iv) $R^1 = CH_3$; (v) $R^1 = F$

Also, cycloaddition of 2-amino-4-arylfuran-3-carbonitrile derivatives (5) with formamide led to the corresponding 4-amino-5-arylfuro[2,3-d] pyrimidine derivatives (6)¹.

$$\begin{array}{c|c}
R & & & & \\
CN & & & & \\
NH_2 & & & \\
\hline
69-74\% & & & \\
\hline
6
\end{array}$$

R = 4-OMe, 4-NMe₂, 4-phenyl and 3-NHAc

Also, reaction of 2-amino-4,5-diphenylfuran-3-carbonitrile $(7)^3$ with formamide gave 4-amino-5,6-diphenylfuro[2,3-d]pyrimidine $(8)^4$.

By analogy, the synthesis of other fused pyrimidines can be achieved by refluxing of 2-amino-4,5-dimethylfuran-3-carbonitrile (9) with formamide in the presence of acetic anhydride afforded 4-amino-5,6-dimethylfuro[2,3-d] pyrimidine (10)⁵⁻⁷.

Me CN
$$\frac{1}{10}$$
 $\frac{10}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$

Treatment of 2-amino-4,5-disubstituted furan-3-carbonitrile (**11a,b**) with formamide yielded 4-amino-5,6-disubstituted furo [2,3-d] pyrimidines (**12a,b**)⁸.

R CN
$$\frac{11a,b}{R}$$
 $\frac{12a,b}{R}$ $\frac{12a,b}{R}$ $\frac{1}{R}$ $\frac{1}$ $\frac{1}{R}$ $\frac{1}{R}$ $\frac{1}{R}$ $\frac{1}{R}$ $\frac{1}{R}$ $\frac{1}{R}$

On the other hand, furopyrimidines can be obtained by reaction of vicinal acylamino and vicinal aminoester furans with formamide. Thus, treatment of 5-amino-4-benzoyl-3-phenylfuran-2-carbonitrile (13) and furan derivatives 15a,b with formamide afforded 4,5-diphenylfuro[2,3-d]pyrimidine-6-carbonitrile (14)⁹ and the corresponding furo[2,3-d]pyrimidine derivatives 16a,b¹⁰.

1. 2- With nitrile compounds

Nitriles reacted with vicinal aminocyano and vicinal acylamino furans to yield the target furopyrimidines. Thus, interaction of compound **7** with benzonitrile and sodium methoxide in refluxing 2-propanol afforded 4-amino-2,5,6-triphenylfuro[2,3-d]pyrimidine (17)⁴.

Also, the effect of acetonitrile on the compound **7** afforded exclusively fused 4-aminopyrimidines **18**, while chloroacetonitrile led to the formation of 4-chloropyrimidines **19**. These different products can be represented as shown in the following scheme¹¹.

$$\begin{split} R = CH_3,\, C_6H_5,\, CICH_2,\, CI_2CH,\\ CH_2CO_2C_2H_5,\, CO_2C_2H_5 \end{split}$$

On the other hand, 2-cyanomethyl-4,5-diphenylfuro[2,3-*d*]pyrimidine-6-carbonitrile (**24**) and 4,5-diphenyl-2-trichloromethylfuro[2,3-*d*]pyrimidine-6-carbonitrile (**25**) can be obtained from reaction of vicinal acylamino furan **13** with malononitrile and trichloroacetonitrile, respectively⁹.

1.3- With orthoethers

Treating of compound 7 with triethylorthoformate (TEOF) yielded ethoxymethyleneimine derivative 26, which can be cyclized by the action of ammonia giving compound 8^{12} .

Also, 4-acetamidophenyl-2-aminofuran-3-carbonitrile (27) was treated with TEOF followed by amination and cyclization in the presence of sodium ethoxide to give 5-(4-acetamidophenyl)-4-aminofuro[2,3-d]pyrimidine (28)¹³.

Similarly, treatment of 2-amino-5-(3-pyridyl)furan-3-carbonitrile (**29**) with diethoxymethineacetate afforded an ethoxyimino derivative which on treatment with ammonia followed by addition of sodium ethoxide gave 4-amino-6-(3-pyridyl)furo[2,3-d]pyrimidine (30)².

In addition to, 2-(α -ethoxyethylideneamino)-4,5-diphenylfuran-3-carbonitrile (**31**) was obtained by reaction of compound **7** with triethylorthoacetate (TEOA) in refluxing acetic anhydride. Furthermore, compound **31** was stirred with hydrazine hydrate yielding 3-amino-4-imino-2-methyl-5,6-diphenyl-3H,4H-furo[2,3-d]pyrimidine (**32**) in good yield¹⁴.

Also, 2-amino-4,5-di-(4-methoxyphenyl)furan-3-carbonitrile (**33**) reacted with TEOF or TEOA in acetic anhydride affording the corresponding imidates **34a,b**. The reaction of **34a,b** with semicarbazide hydrochloride gave 4-imino-5,6-di-(4-methoxyphenyl)-3-uriedofuro[2,3-*d*]pyrimidine **36a** and 4-imino-5,6-di-(4-methoxyphenyl)-2-methyl-3-uriedofuro[2,3-*d*] pyrimidine **36b**, respectively. The formation of compounds **36a,b** was rationalized in terms of the initial formation of the intermediate **35**. Also, hydrazinolysis of **34a** in ethanol yielded the 3-amino-4-imino-5,6-di(4-methoxyphenyl)-3*H*,4*H*-furo[2,3-*d*]pyrimidine (**37**)¹⁵.