

Multidetector CT in The Evaluation of Potential Living Donors for Liver Donor Liver Transplantation

Essay

Submitted for the partial fulfillment of Master Degree

In Radiodiagnosis

By
Loay Ahmed Mohamed Ismaeil
M.B.B.Ch,

Supervised by

Prof. Dr. Khalid Esmat Alam

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Mohammed El Gharib Abo Elmaaty

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

List of Contents

Title	Page
	Page
Acknowledgement	
List of abbreviations	ii
List of Tables	iv
List of Figures	V
Introduction & the aim of the work	1
Anatomy of the liver	3
Important pathological conditions and donor evaluatio	n 26
Physics and technical principles	42
MSCT in evaluation of living donor liver transplantation	ion64
Summary and conclusion	101
References	103
Arabic summary	

List of Abbreviations

3DCT 3 dimentional Computerized tomography

AFP alfafetoprotien

APCR Activated protein c resistance

BMI Body mass indexBSA Body surface areaCBD Common bile duct

CEA Carcinoembryonic antigen
CHA Common hepatic artery
CHA Common hepatic artery

CMV Cytomegalovirus

CT Computerized tomography

CTA Computerized tomography angiography DDLT Deceased donor liver transplantation

ERCP Endoscopic retrograde

cholangiopancreatography

GVBWR Graft volume body weight ratio

HBV Hepatits b virus

HCT Helical Computerized tomography
HIV Human immuno deficiency virus

HU Hounsfield unit
IVC Inferior vena cava
IVC Inferior vena cava

LDLT Living donor liver transplantation

LHA Left hepatic arteryLHD Left hepatic ductLLS Left lateral segment

LPV Lt portal vein

LT liver transplantation

MDCT Multidetector Computerized tomography

MinIP Minimal intensity projectionMIP Maximum intensity projectionMPR Multiplanar reformatting

MPV Main portal vein

MRCP Magnetic resonant cholangiopancreatography

List of Abbreviations (Cont.)

MRI Magnetic resonant imaging
OLT Orthotopic liver transplantation

RAPV Right anterior portal vein RASD Right anterior sectorial duct

RHA Right hepatic artery
RHD Right hepatic duct
RHD Right hepatic duct
ROV Region of vision

RPPV Right posterior portal vein **RPSD** Right posterior sectorial duct

RPV Right portal vein SA Splenic artery

SLV Standerd liver volume SSD surface shaded display

T3 Triiodotyronine

T4 Throxine

TSH Throid stimulating hormone

VR Volume reneder

List of Table

Table	Subject	Page
1	Segmental anatomy of the liver.	14
2	Michel's classification of hepatic artery variants.	16
3	Portal Venous Variants and Liver Transplantation.	36
4	Main Features of LLS Donation versus Right Lobe Donation.	40
5	Portal Venous Variants and Liver Transplantation.	91

List of Figures

Fig.	Subject	Page
1	The Anterior surface of the liver	3
2	Inferior surface and posterior surface	5
3	In this classical description of liver	7
4	Liver segments	8
5	Clockwise numbering of the segments	9
6	On a frontal view of the liver the posteriorly	9
	located segments 6 and 7 are not visible	
7	Definition of the segments	10
8	Surface Projection of the liver	11
9	Anterior and posterior view of liver	11
10	Shaded-Surface 3D reconstructions of the liver	12
	segments	
11	Bismuth's classification	13
12	Hepatic arterial branching patterns can be	16
	divided into 10 types	
13	Normal portal vein anatomy type 1	18
14	Trifurcation of the portal vein	18
15	Separate origin of the right posterior sectoral	19
	branch from the main portal vein	
16	Drawings illustrate the types of RPV branching	19
17	Normal biliary anatomy. shows normal hepatic	22
	biliary segmental anatomy	
18	Intrahepatic biliary duct branching patterns are	23
	divided into six types	
19	Normal CT appearance of liver	24 40
20	Stepwise pathway of carcinogenesis for HCC in	40
	cirrhosis.	
21	Different generation CT scanner	42
22	Principle of spiral\helical CT scanning	43
23	Spiral CT	44
24	Detector array design for MSCT	46

Fig.	Subject	Page
25	Draw show relation of table movement with	48
	respect to gantry rotation	
26	a) Narrow collimation (b) Wide collimation	50
27	Hepatic volume determination in potential liver donor	55
28	hand-traced images of hepatic volume	56
29	Hepatic volume determination in potential liver donor	56
30	Three-dimensional computer model depicting volume of liver	57
31	Reconstruction of axial images from projection data	59
32	MIP of data encountered	61
33	MPR .Reconstruction of axial images from projection data	62
34	Volume rendering technique of the hepatic arterial system	63
35	Spiral CT of hemangioma.	65
36	Unenhanced CT of liver	66
37	Anterior 3D VR image obtained in a potential living donor of an LLS	68
38	Volume-rendered CT of the liver	69
39	Liver regeneration before and after right lobe donation	70
40	3D CT cholangiogram in candidate with normal (type 1) anatomy	71
41	Volume-rendered CT cholangiogram (view from above)	71
42	CT cholangiographic source image shows a trifurcation of the biliary ducts	72
43	3D CT cholangiogram in candidate with type 3 biliary variant	73

Fig.	Subject	Page
44	Normal hepatic arterial anatomy	76
45	3D CT arteriogram shows normal (type 1)	76
46	hepatic arterial anatomy 3D CT arteriogram shows normal (type 2)	77
40	hepatic arterial anatomy	
47	3D CT arteriogram shows normal (type 3)	77
40	hepatic arterial anatomy	70
48	3D CT arteriogram shows normal (type 4) hepatic arterial anatomy	78
49	3D CT arteriogram shows normal (type 5)	78
.,	hepatic arterial anatomy	, 0
50	3D CT arteriogram shows normal (type 6)	79
	hepatic arterial anatomy	
51	3D CT arteriogram shows normal (type 8)	79
	hepatic arterial anatomy	
52	3D CT arteriogram shows normal (type 9)	80
	hepatic arterial anatomy	0.0
53	3D CT arteriogram shows normal (type11) hepatic arterial anatomy	80
54	3D CT arteriogram shows normal (type 11)	81
	hepatic arterial anatomy	
55	3D (VR) image shows the normal hepatic	82
56	arterial anatomy.	82
36	the normal arterial anatomy with a corkscrew- like gastroduodenal artery	82
57	Thick-slab coronal oblique (MIP) image from	83
	CT data shows a replaced RHA	
58	Coronal oblique VR image shows a replaced	83
	LHA	
59	Coronal oblique targeted MIP image	84
	demonstrates that an accessory RHA	

Fig.	Subject	Page
60	Thick-slab coronal oblique MIP image shows	84
	an accessory LHA	
61	Thick-slab axial MIP image shows a complex	85
	arterial branching pattern	
62	Thick-slab coronal oblique MIP image shows	85
(2	two LHAs	0.6
63	Curved MIP shows replaced LHA	86
64	Curved MIP shows replaced LHA&RHA	86
65	type 1 main portal vein (MPV) anatomy. Maximum-intensity-projection image	87
66	type 2 main portal vein (MPV) anatomy.	88
	Volume-rendered image	
67	type 3 main portal vein (MPV) anatomy.	89
	Volume-rendered image	
68	Thick-slab coronal MIP image shows a	92
	trifurcation of the main portal vein	
69	extraparenchymal branching of the anterior	93
	branch (A) from the left portal vein (L) close to	
70	the bifurcation of the main portal vein	02
70	Coronal VR image shows extraparenchymal	93
	branching of the anterior branch (RAPV)(A) from the left portal vein (L) far (18 mm) from	
	the bifurcation of the main portal vein (M) .	
71	Coronal VR image shows a vein (arrow) arising	94
, 1	from (MPV) and supplying LLS	<i>)</i> 1
72	Normal hepatic venous anatomy VR	95
73	Thick-slab axial MIP image shows Normal	96
	hepatic venous anatomy	-
74	Thick-slab coronal oblique MIP image shows	96
	Normal hepatic venous anatomy	
75	Coloured 3d image shows segment V drainage	96
	into MHV	

Fig.	Subject	Page
76	Thick-slab axial MIP image shows branching	97
	pattern of the middle hepatic vein	
77	Thick-slab axial MIP image shows the late	97
	confluence of the middle hepatic vein (M)	
	close to the IVC	
78	Dominance of the MHV over the RHV	98
79	Coronal VR image shows a large accessory	99
	inferior RHV (arrow) draining into the IVC	
80	An accessory hepatic vein originate from IVC	100
	draining segment VIII	

دور الأشعة المقطعية المبرمجة بالكمبيوتر متعددة الكواشف في تقييم وقياس الكبد قبل عمليات زرع الكبد نقلاً من متبرع حي

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من الطبيب / لؤى أحمد محمد إسماعيل بكالوريوس الطب والجراحة

تحت إشراف الدكتور / خالد عصمت علام أستاذ الأشعة التشخيصية كلية الطب. جامعة عين شمس

الدكتور / محمد الغريب أبو المعاطي مدرس الأشعة التشخيصية كلية الطب. جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٠

الملخص العربي

إن قصر عمر الكبد المنقول من جسد متوفي جعل جراحى زراعة الكبد الآن يلجأون إلى زراعة الكبد من جسد حى هذه الوسيلة المبتكرة تسمح للشخص السليم بالتبرع بأجزاء من كبده لتناسب أشخاص يعانون من مرض كبدى فى مرحلته النهائية.

وبسبب زيادة الاحتياج لنقل زراعة الكبد من حى فان جسد المتبرع له أهمية قصوى ولهذا يتم اختيار بروتوكول للمحافظة على صحة المتبرع باستبعاد المرشحين غير المناسبين سواء لأسباب طبية أو تشريحية بالكبد.

وتقوم الأشعة المقطعية بدور مهم في تقييم المتبرع الحي لمعرفة الحالات التي لا يسمح فيها بالتبرع، ومعرفة الاختلافات التشريحية والتي تغير من الجراحة.

ولتبسيط وتقصير الوقت والتكلفة فان استخدام الأشعة المقطعية تمثل وسيلة تقييميه للجمع بين مميزات قلة استخدام الأشعة التداخلية وفى نفس الوقت تقييم الشكل النسيجى وتفاصيل الأوعية الدموية للكبد والجهازالمر ارى.

وبواسطة جهاز الأشعة المقطعية متعدد المقاطع وعن طريق صور المرحلة الشريانية والوريدية يتم عمل صور ثلاثية الأبعاد وأيضا لحجم الكبد يسهل هذا إنشاء التكوين التشريحي للأوعية الدموية وملاحظة اى اختلاف فيها وبخاصة تلك التي تعد ممنوعة للتبرع نهائيا أو جزئيا مما يتطلب تغيير خطة الجراحة وأيضا الحجم المنقول والمتبقى وأيضا التكوين النسيجي للكبد.

Acknowledgement

At first, thanks to Allah for all his gifts.

Words stand short when they come to express my gratefulness to my supervisors.

First and foremost, I deeply indebted and grateful to **Prof**. **Dr. Khalid Esmat Alam**, Professor of Radiodiagnosis, Ain Shams University for his continuous encouragement, valuable guidance, knowledge, experience and extreme efforts in making this work possible.

I am really grateful to **Dr.Mohamed EL Gharib Abo Elmaaty**, Lecture of Radiodiagnosis, Ain Shams University for his sincere guidance, kind support, and valuable advice. To whom I owe a lot, and without whom I could not be able to achieve this work.

Finally I would like to express my deep appreciation to my mother, my wife and my family for their unlimited support and encouragement and ask Allah merciful for my father.

Loay Ahmed Mohamed Ismaeil

Introduction

Living donor liver transplantation has evolved into a variable and widely accepted therapeutic option to alleviate the critical shortage of cadaveric liver transplant organs (Adam et al., 2003).

This innovation procedure allows healthy adults to donate a portion of their livers to compatible recipient with endstage liver disease (*Broelsh et al.*, 2004).

With the development of new multi detector computed tomographic (CT) techniques, the radiologist play a relevant role, providing, with a minimally invasive procedure, valuable information that will be useful in choosing the most suitable candidate and in identifying anatomic variants that may alter the surgical approach (Ana Alonoso et al., 2005).

Introduction and Aim of The Work

Aim of the work

Evaluate The role of MSCT in assessment of potential donors before undergoing liver transplantation.