

Alpha lipoic acid versus N-acetyl cysteine in protection against fenpyroximate induced toxicity in albino rats

Thesis

Submitted in partial fulfillment for the M.D. Degree requirements in forensic Medicine and Clinical Toxicology

By

Amr Reda Zaki Ali

Assistant lecturer of forensic Medicine & Clinical Toxicology, Faculty of medicine- Beni-suef University

Under supervision of

Prof. Dr. Mervat Hamdy Abdel Salam

Professor of forensic Medicine & Clinical Toxicology, Faculty of medicine-Cairo University

Prof. Dr. Amany Mahmoud Ahmed

Professor of forensic Medicine & Clinical Toxicology, Faculty of medicine-Beni-suef University

Prof. Dr. Manal Elsayd Elhalwagy

Professor of Biochemistry department of mammalian toxicology, Central Pesticide laboratory

A. Prof. Dr. Dina Helmy Mohamed

Assistant Professor of histology, Faculty of medicine-Cairo University

Faculty of medicine Cairo University 2012

Abstrac

(**key words:** fenpyroximate, oxidative stress, lipid perioxidation, endocrine toxicity and natural antioxidant).

This thesis was designed to study and investigate the endocrine disrupture effect of fenpyroximate pesticide and the potentiality of each of alpha lipoic acid and Nacetylcysteine in attenuating the toxicity of fenpyroximate. 90 males of albino rats weighed(150gm) and (3 month age) will be divided into nine 9 main groups (10 rats in each) according to type and dose that rats intake. Group (1) served as control, Group (2) rats were orally treated with antioxidant alpha lipoic acid (ALA), Group (3) rats were orally treated with antioxidant N-acetyl cysteine (NAC), Group (4) rats were orally treated with high dose of pesticide, Group (5) rats were orally treated with (ALA) after administration of high dose of pesticide, Group (6) rats were orally treated with antioxidant (NAC) after administration of high dose of pesticide, Group(7) rats were orally treated with low dose of pesticide, Group (8) rats were orally treated with antioxidant (ALA) administration of low dose of pesticide, Group (9) rats were orally treated with antioxidant (NAC) after administration of low dose of pesticide. All groups were force fed by gastric intubation for 14 and 28 days. The oxidative stress status of treated animals has been evaluated by assessment of total ATPase, total antioxidant activity, SH-Protein and malondialdehyde (MDA), the thyroid function markers (T3, and T4), pancreatic function markers (amylase, lipase, insulin and glucose), in addition cholesterol and protein were measured. Our result revealed that fenpyroximate induce inhibitory effect on total antioxidant activity, SH-Protein activity and increased in lipid perioxidation (MDA). The results showed also disturbances in thyroid and pancreatic markers. In addition, our result revealed that natural antioxidants (ALA and NAC) have more or less counteracting effect on oxidative stress, endocrine toxicity caused by fenpyroximate.

ACKNOWLEDGMENT

First and foremost thanks are due to Allah for allowing me to begin to go through and to complete this work.

I am deeply indebted to <u>prof. Dr. Mervat Hamdy</u>, professor of Forensic medicine and clinical Toxicology, faculty of Medicine, Cairo University, for her continuous support, meticulous supervision, valuble criticism, complete guidance, and encouragement throught this work.

My deepest gratitude is to <u>prof. Dr. Manal El Elhalwgy</u>, Professor of Biochemistry, Mammalian toxicology Department. Central pesticide laboratory for her continuous support, meticulous supervision, valuble criticism, complete guidance, and encouragement throught this work.

My deepest gratitude is to <u>prof. Dr. Sheren Ghalb</u>, professor of Forensic medicine and clinical Toxicology, faculty of Medicine, Cairo University, for her continuous support ,meticulous supervision, valuble criticism, complete guidance, and encouragement throught this work.

My deepest gratitude is to <u>prof. Dr. Amany Mahmoud</u>, professor of Forensic medicine and clinical Toxicology, faculty of Medicine, Beni-Suef University, for her continuous support ,meticulous supervision, valuble criticism, complete guidance, and encouragement throught this work.

My deepest gratitude is to <u>A. Prof. Dr. Dina Helmy</u>, Assistant professor of histology, faculty of Medicine, Cairo University, whose outstanding support, stimulating suggestions, and encouragement helped me all the time.

My deep appreciation and thanks to my professors and colleagues in the forensic medicine and clinical toxicology department, faculty of medicine, Cairo and Beni-Suef University for their extended support and encouragement

My heartful thanks to all my family members, my wife, my parents, my sister, and my brother for their assistance ,encouragement patience and support through out my work.

Amr Reda Zaki

TABLES OF CONTENTS

Title	page
LIST OF ABBREVIATION	I
LIST OF TABLES	III
LIST OF FIGURES	VI
LIST OF PHOTOMICROGRAPH	VIII
I-INTRODUCTION AND AIM OF THE WORK	1
II-REVIEW OF LITERATURE:	
Chapter (1) FENPYROXIMATE.	5
Chapter (2) FENPYROXIMATE TOXICITY.	19
Chapter (3) FENPYROXIMATE AND	30
OXIDATIVE STRESS.	
Chapter (4) ANTIOXIDANT DEFENCES.	35
III-MATERIAL AND METHODS	45
IV-RESULTS	71
V-DISCUSSION	104
VI-SUMMARY AND CONCLUSION	116
VII-RECOMMENDATION	119
VIII-REFERENCES	120
IX-ARABIC SUMMARY	

LIST OF ABBREVIATION

ALA	Alpha Lipoic acid
ADI	Accepted daily intake
ATP	Adenosine triphosphate
DHLA	Dihydrolipoic acid
DA	Dopaminergic neurons
EPA	Environmental Protection Agency
EDC	Endocrine Disruptor Chemical
FMN	Flavin mononucleotide
2Fe-2s	Binuclear iron sulphur cluster
4Fe-4s	Tetanuclear iron sulphur cluster
GSH	Reduced glutathione
GSSG	Glutathione disulfide or oxidized glutathione
GSH-Px	Glutathione perioxidase
GSH	Glutathione
GST	Glutathione-S-transferase
GR	Glutathione reductase
GCL	Glutamate cysteine ligase
GSH/GSSG	Oxidised glutathione or glutathione disulphide
γ-GT	Gamma Glutamyl transferase
НРТ	Hypothalamo pituitary thyroid

HP	High dose of pesticide
K	Potassium
LD50	Lethal dose in 50% of animals
LP	Low dose of pesticide
MDA	Malonidealdihyde
N2	Iron sulphur cluster
NO., ONOO	Nitrogen centered
NAC	N-acetyl-L-cysteine
NA	Sodium
NADH	Nicotineamide adenine dinucleotide
NADP	Nicotinamide Adenine Dinucleotide Phosphate
O2	Singlet oxygen
ОН	Hdroperoxyl radicals
R., RCOO	Carbon-centered
ROS	Reactive oxygen species
SN	Substantia nigra
TSH	Thyroid stimulating hormone
T4	Tetraiodothyronine
Т3	Triiodothyroinine.
TAC	Total Antioxidant Capacity
TCA	Trichloroacetic acid
TBA	Thiobarbituric acid

LIST OF TABLES

Number	Title	page
Table (1)	Physical and chemical properties of fempyroximate	7
Table (2)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) on Total ATPase Activity (Mm/min/ml) in plasma of albino rats.	85
Table (3)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) or N-Acetyl Cysteine (NAC) On Malondialdehyde(MDA) (μmol/ml) In Plasma Of albino Rats.	85
Table (4)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) or N-Acetyl Cysteine (NAC) On SH- Protein (Mmol/dL) In Plasma Of Albino Rats.	86
Table (5)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Total Antioxidant Capacity (TAC) (Mg/dl) In Plasma Of Albino Rats.	86
Table (6)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Amylase (U/L) In Plasma Of Albino Rats.	87

Number	Title	page
Table (7)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Lipase (U/L) In Plasma Of Albino Rats.	87
Table (8)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Insulin (μIU/mL) In Plasma Of Albino Rats.	88
Table (9)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Glucose (mg/dl) In Plasma Of Albino Rats.	88
Table (10)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On T4 (ng/dl) In Plasma Of Albino Rats.	89
Table (11)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On T3(ng/dl) In Plasma Of Albino Rats.	89
Table (12)	Effect Of Repeated Intoxication With Fenpyroximate In Presence Or Absence Of Alpha Lipoic Acid (ALA) Or N-Acetyl Cysteine (NAC) On Total Protein(g/dl) In Plasma Of Albino Rats.	90

Table (13)In Presence Or Absence Of Alpha Lipoic Acid (ALA)Or N-Acetyl Cysteine (NAC) On Cholesterol (mg/dl)	90
Or N-Acetyl Cysteine (NAC) On Cholesterol (mg/dl)	
Level In Plasma Of Albino Rats.	
Effect Of Repeated Intoxication With Fenpyroximate	
In Presence Or Absence Of Alpha Lipoic Acid (ALA)	91
Table (14) Or N-Acetyl Cysteine (NAC) On Sodium (NA)	91
(Mmol/L) In Plasma Of Albino Rats.	
Effect Of Repeated Intoxication With Fenpyroximate	
In Presence Or Absence Of Alpha Lipoic Acid (ALA)	91
Table (15) Or N-Acetyl Cysteine (NAC) On Potassium K	91
(Mmol/L) In Plasma Of Albino Rats.	
Pearson correlation between parameters of high dose	
Table (16) treated group for 14 days in presence or absence of	92
Alpha lipoic acid (ALA)or N-acetyl cystene (NAC) in	72
albino rats.	
Pearson correlation between parameters of low dose	
Table (17) treated group for 28 days in presence or absence of	93
Alpha lipoic acid (ALA)or N-acetyl cystene (NAC) in	93
albino rats.	
Pearson correlation between parameters of high and low	
dose treated group for 14&28 days in presence or	9/1
Table (18) dose treated group for 14&28 days in presence or absence of Alpha lipoic acid (ALA)or N-acetyl cystene	94

LIST OF FIGURES

Number	Title	page
Fig (1)	Chemical structure of Fenpyroximate	6
Fig (2)	Synthesis of Fenpyroximate	8
Fig (3)	Chemical names and structures of fenpyroximate and its metabolites	12
Fig (4)	Propsed pathway for intramolecular transesterification from metabolite A to metabolite B	13
Fig (5)	Degradation pathway of fenpyroximate in soil	14
Fig (6)	Degradation pathway of fenpyroximate in water	15
Fig (7)	Metabolic pathway of fenpyroximate in plant	16
Fig (8)	Inhibitors of mitochondrial respiration	17
Fig (9)	Complex1 structure and illustration mechanisms of action of fenpyroximate.	18
Fig (10)	Sources and pathways of human exposure to pesticides	24

Number	Title	page
Fig (11)	Illustration of mechanisms of endocrine disruption	25
Fig (12)	Cell injury by ROS or free radical induced oxidative stress	31
Fig (13)	Sources of ROS and other free radicals	33
Fig (14)	Biological antioxidant defense systems	36
Fig (15)	Structure of N-Acetylcysteine (NAC).	38
Fig (16)	Structure of Alpha lipoic acid (ALA).	41

LIST OF PHOTOMICROGRAPH

Photo	Title	page
1)	Photomicrograph of a section in the thyroid gland from a control albino rats showing thyroid follicles filled with homogenously acidophilic colloid and lined with follicular cells and sepaprated by moderate amount of interfollicular tissue containing follicular and interfollicular cells and small blood vessels (H & E X 400).	95
2)	Photomicrograph of a section in the thyroid gland from a ALA+ve control (antioxidant treated) albino rats showing thyroid follicles with distorted outline and some of their lining follicular cells are detached (arrow) within their lumen. Note the presence of the dilated congested blood vessels in the interfollicular tissue (H & E X 400).	95
3)	Photomicrograph of a section in the thyroid gland from a NAC+ve control (antioxidant treated) albino rats showing showing thyroid follicles with mildly distorted outline and decreased amount of colloid and lined by mildly vacuolated follicular cells (H & E X 400).	96
4)	Photomicrograph of a section in the thyroid gland from a HP pesticide treated albino rats showing markedly distorted follicles up to complete disappearance of their lumen (asterix) and markedly vacuolated follicular cells. Note the large number of congested blood vessels (H & E X 400).	96

Photo	Title	page
	Photomicrograph of a section in the thyroid gland from	
	a HP pesticide and ALA antioxidant treated albino rats	
5)	showing markedly distorted follicles with nearly absent	97
5)	colloid . Some of them have no or very narrow lumen.	91
	Note the increase amount of fibrous element within the	
	interfollicular tissue (H & E X 400).	
	Photomicrograph of a section in the thyroid gland from	
	a HP pesticide and NAC antioxidant treated albino rats	
6)	showing follicles containing small amount of colloid (C)	07
6)	and lined with mildly vacuolated follicular cells. Areas	97
	of thickened interfollicular tissue can be seen containing	
	congested blood vessels (H & E X 400).	
	Photomicrograph of a section in the thyroid gland from	
7)	a LP pesticide treated albino rats showing loss of part	00
	of the walls of adjacent follicles so that their lumen	98
	coalesced together (H & E X 400).	
	Photomicrograph of a section in the thyroid gland from	
0)	a LP pesticide and ALA antioxidant treated albino rats	00
8)	showing thickening of interfollicular tissue with	98
	increased cellularity (H & E X 400).	
	Photomicrograph of a section in the thyroid gland from	
9)	LP pesticide and NAC antioxidant treated albino rat	
	showing many thyroid follicles filled with colloid and	00
	lined by mildly vacuolated follicular cells with	99
	moderate amount of interfollicular tissue inbetween (H	
	& E X 400).	

Photo	Title	page
10)	Photomicrograph of a section in the pancreas from a control albino rats showing an islet of Langerhans surrounded by pancreatic acini with central acidophilic part (arrowhead) and basal basophilic part (arrow) (H & E X 400).	99
11)	Photomicrograph of a section in the pancreas from a ALA+ve control (antioxidant treated) albino rats showing islet of Langerhans with few slightly dilated capillaries (arrowhead) and surrounded by pancreatic acini (H & E X 400).	100
12)	Photomicrograph of a section in the pancreas from a NAC+ve control (antioxidant treated) albino rats showing islet of Langerhans and pancreatic acini (H & E X 400).	100
13)	Photomicrograph of a section in the pancreas from a HP pesticide treated albino rats showing an islet of Langerhans with some degenerated cells (arrow) surrounded by pancreatic acini and few dilated vessels (arrowhead) (H & E X 400).	101
14)	Photomicrograph of a section in the pancreas from a HP pesticide and ALA antioxidant treated albino rats showing nearly normal appearance of islet of Langerhans and pancreatic acini (H & E X 400).	101
15)	Photomicrograph of a section in the pancreas from a HP pesticide and NAC antioxidant treated albino rats showing some dilated vessels (arrowhead) within the islet of Langerhans and in-between the pancreatic acini (H & E X 400).	102

Photo	Title	page
	Photomicrograph of a section in the pancreas from a LP	
	pesticide treated albino rats showing vacuolation of some	
16)	cells (arrow) of islet of Langerhans and some dilated	102
	congested vessels (arrowhead) in-between the acini (H & E	
	X 400).	
	Photomicrograph of a section in the pancreas from a LP	
17)	pesticide and ALA antioxidant treated albino rats showing	103
17)	normal structure of islet of Langerhans (I) and pancreatic	103
	acini (A) (H & E X 400).	
	Photomicrograph of a section in the pancreas from a LP	
18)	pesticide and NAC antioxidant treated albino rats showing	102
	a normal appearance of islet of Langerhans (I) and	103
	pancreatic acini (A) (H & E X 400).	