Al Azhar University Faculty of Engineering Electrical Engineering Department

Image Processing Using Residue Number System

A thesis submitted to the Electrical Engineering Department Faculty of Engineering – Al Azhar University for the degree of

(**Doctor of Philosophy**)

In

Electrical Engineering

(Electronics and Communications)

By

Eng. Usama Abdel Fattah Abdel Tawab Gad

M. Sc. in Electrical Engineering, 2008

Under Supervision of

Prof. Dr. Mohammad Ibrahim Youssef

Faculty of Engineering – Al Azhar University

Assoc. Prof. Dr. Mohammad Zahra

Faculty of Engineering – Al Azhar University

Cairo

2014

Al Azhar University Faculty of Engineering Electrical Engineering Department

Image Processing Using Residue Number System

A thesis submitted to the Electrical Engineering Department Faculty of Engineering – Al Azhar University for the degree of

(Doctor of Philosophy)

In

Electrical Engineering

(Electronics and Communications)

By

Eng. Usama Abdel Fattah Abdel Tawab Gad

M. Sc. in Electrical Engineering, 2008

Approved by the examining committee

1- Prof. Dr. Fathy Ahmed El Sayed Amer Faculty of Computers and Information – Cairo University	(
2- Prof. Dr. Hala Mohammed Abdel Kader Faculty of Engineering in Shobra – Benha University	()
3- Prof. Dr. Mohammad Ibrahim Youssef Faculty of Engineering – Al-Azhar University	()
4- Assoc. Prof. Dr. Mohammad Zahra Faculty of Engineering – Al-Azhar University	()

Acknowledgment

Thanks to **ALLAH** before and after, who blessed me with kind professors and gave me the support during this work.

I wish to present my deep gratitude to my supervisor Prof. Dr. Mohammad Ibrahim Youssef for thoughtful ideas that really shaped this work. I am very thankful for his precious time, valuable guidance, encouragement, and patience.

I would like to express and to present my thanks and deepest gratitude to Assoc. Prof. Dr. Mohammad Zahra for real support and continuous care.

Finally, this work would not have been possible without the never-ending support and encouragement of my parents, wife and sons. My entire deep love to them and I hope that **ALLAH** helps me to make them happy as long as I live.

Last but not least, I would like to express my gratitude to all my friends assisted me in this work.

Abstract

The main parts of the digital signal processing are the mathematical operations. These operations can be done using many algorithms, such as fixed-point, floating-point, logarithmic, and residue number systems. In fixed-point arithmetic, the data format was usually adopted in the first generation of digital signal processor, the major limitation of fixed-point data formats is their restricted dynamic range and accuracy. When a large dynamic range and high precision are required, a floating-point data format or logarithmic is often adopted. The Residue Number System (RNS) is an integer capable of supporting parallel, carry free and high-speed arithmetic. The system also offers useful properties for error detection, error correction, and fault tolerance in digital systems.

An RNS can be used to represent very large integers as residues of manageable word length and to exploit the independence of these residues to facilitate parallel computations.

This thesis is concerned with Image Processing using RNS. The RNS offers the advantage of using integer based arithmetic operations and a simple hardware realization involving arrays of look-up tables stored in high density Read Only Memories (ROMs). In residue number system scaling is necessary to keep the data within the limited dynamic range. The effects of residue scaling on the performance of image processing are described in this thesis.

In this thesis, realizations of many algorithms for image processing using residue number system have been presented. Realization of Discrete Wavelet Transform (DWT), Inverse Discrete Wavelet Transform (IDWT), edge detection, image denoising and image compression are demonstrated. Different examples for each application are given.

Simulation of DWT and IDWT algorithms using RNS are presented. The use of RNS allows the decomposition of a given dynamic range in slices of smaller range on which the computation can be efficiently implemented in parallel. In addition, the power dissipation is reduced by taking advantage of the speed-up due to the parallelism of the RNS structure. Simulation results demonstrate that the suggested algorithm is efficient and faster than the floating-point double precision method with enhancement ratio of 30% in DWT and 71% in IDWT. This algorithm can be used for further studies in the field of image processing.

Edge detection in the field of image processing is one of the most important areas of interest. It is used in many different applications in image processing, such as diagnosis in medical imaging, topographical recognition and automated inspection of machine assemblies. In this thesis a fast wavelet-based edge- detector scheme for digital images is proposed. This scheme is based on properties of the wavelet transform and advantages of the Residue Number System. Simulation results presented in this thesis demonstrate that the suggested algorithm is faster than floating point DWT method with enhancement ratio increasing with the increase in the image size.

There are several types of image denoising available to achieve higher degree of denoising without any significant loss in the visual quality of the image. In this thesis, a proposed algorithm based on Residue Number System is used. The behavior of the mean filter with different type of images is studied. To analyze the performance of the proposed algorithm, Gaussian and Salt and Pepper noise are used. Image quality is measured objectively, using signal-to-noise ratio or picture quality scale, and subjectively, using perceived image quality. The values of the output Signal to Noise Ratio (SNR) of the proposed algorithm, with small wordlength, are all the same as that given by the floating-point double precision method.

Finally, a fast image compression algorithm using Residue Number System is proposed. The use of the RNS allows the decomposition of a given dynamic range in slices of smaller range on which the computation can be efficiently implemented in parallel. Simulation results show that the suggested algorithm is efficient. The output SNR and Peak Signal to Noise Ratio (PSNR) values of the proposed algorithm, with small wordlength (12 bits), are all the same as that given by the floating point double precision method (64 bits).

Published Papers

1. M. I. Youssef, M. M. Zahra and U. A. Gad "A Fast Wavelet-Based Edge Detector Using Residue Number System"

Published in **Journal**:

Journal of Al Azhar University Engineering Sector (JAUES), Cairo, Egypt, Vol. 8, No. 28, pp. 1339-1346, July 2013.

2. M. I. Youssef, M. M. Zahra and U. A. Gad "A Proposed Image Denoising Algorithm Using Residue Number System"

Published in **Journal**:

Journal of Al Azhar University Engineering Sector (JAUES), Cairo, Egypt, Vol. 9, No. 30, pp. 265-277, January 2014.

TABLE of CONTENTS

Chapter 1: Introduction	1
1.1 Digital Image Processing	1
1.2 Image Processing Operations	
1.3 Image Processing Applications	
1.4 Elements of an Image Processing System	
1.5 Motivation	
1.6 Thesis Organization	
Chapter 2: An Overview for Residue Number Sys	stem. 15
2.1 Introduction	15
2.2 Fixed point Number System	16
2.3 Floating point Number System	17
2.4 Logarithmic Number System	19
2.5 Residue Number System	19
2.6 Identities Involving Residues and Integer Values 2.6.1 Residue of Multiples of m 2.6.2 Addition of Multiples of m 2.6.3 Additive Inverse Modulo m	23 25 25
2.6.4 Addition and Subtraction Modulo m	
2.7 Conversion from RNS to Decimal	28 29
Chapter 3: Wavelet Transform using RNS	40
3.1 Introduction	40
3.2 Wavelet Characteristics	42
3.3 Wavelet Analysis	43
3.4 Evolution of Wavelet Transform	
3.4.1 Fourier Transform (FT)	44
3.4.2 Short Time Fourier Transform (STFT)	45

3.4.3 Wavelet Transform	46
3.5 Theoretical Aspects of Wavelet Transform	47
3.5.1 Continuous Wavelet Transform	
3.5.2 Discrete Wavelet Transform (DWT)	
3.6 Implementation of DWT	
3.6.1 Multiresolution Analysis (MRA)	
3.6.3 Perfect Reconstruction	
3.7 Two Dimensional DWT (2D DWT)	61
3.8 Applications of Wavelet Transforms	67
3.9The Proposed Algorithm	68
3.9.1 DWT using RNS	
3.9.2 IDWT using RNS	
3.10 Simulation Results	70
Chapter 4: Edge Detection Using RNS	72
•	
4.1 Introduction	
4.2 Wavelet Transform	
4.3 The Proposed Algorithm of Edge Detection	
4.4 Simulation Results	77
Chapter 5: Image Denoising Using RNS	82
5.1 Introduction	82
5.2 Image Denoising using Mean Filter	84
5.3 The Proposed Algorithm of Image Denoising	88
5.4 Simulation Results	
6. Image Compression using RNS	98
6.1 Introduction	98
6.2 Need for Image Compression	99
6.3 Classical Image Compression Methods	101
6.3.1 JPEG	101
6.3.2 JPEG2000	
6.4 Image Compression Using RNS	107

6.5 Simulation	Results	109
Chapter 7:	Conclusion and Future Work	112
References		115

List of Figures

Fig. 1.1 Image digitization	2
Fig. 1.2 A digital image and its numerical representation	2
Fig. 1.3 Remote sensing images for tracking Earth's climate and resources .	6
Fig. 1.4 Space image applications	6
Fig. 1.5 Medical imaging applications	7
Fig. 1.6 Radar imaging	7
Fig. 1.7 Robot and machine vision applications	8
Fig. 2.1 floating point format	18
Fig. 2.2: LNS format	19
Fig. 2.3 RNS to Decimal Converter Architecture	35
Fig. 2.4 Medium Converter basic architecture	37
Fig. 3.1 Approximation Spaces (V_j) and Detail Spaces (W_j)	52
Fig. 3.2 One-level DWT decomposition scheme	58
Fig. 3.3 Three levels DWT decomposition tree	58
Fig. 3.4 One-level DWT reconstruction scheme	61
Fig. 3.5 Three-level DWT reconstruction scheme	61
Fig. 3.6 One-level 2D DWT decomposition scheme	65
Fig. 3.7 2D DWT coefficients' image	65
Fig. 3.8 Example of a 2D DWT decomposition	66
Fig. 3.9 One-level 2D DWT reconstruction scheme	67
Fig. 3.10 The DWT block diagram using RNS	68
Fig. 3.11 The RNS-IDWT block diagram	69
Fig. 3.12 Masged original image and RNS DWT image	69
Fig. 3.13 Masged original image and RNS IDWT image	70
Fig. 4.1 Block diagram for the 1-level DWT	74

Fig. 4.2 1-level DWT of a color image	75
Fig. 4.3 The block diagram of the proposed edge detection algorithm	76
Fig. 4.4 Masged image edge detection	77
Fig. 4.5 Makka image edge detection	78
Fig. 4.6 Madina image edge detection	78
Fig. 4.7 Lena image edge detection	79
Fig. 4.8 Execution time versus image size	80
Fig. 5.1 Filter Mask	86
Fig. 5.2 The block diagram of the proposed algorithm of image denoising	88
Fig. 5.3 Masged gray image	91
Fig. 5.4 Madina gray image	91
Fig. 5.5 Lena gray image	92
Fig. 5.6 Brain gray image	92
Fig. 5.7 Diagram gray image	93
Fig. 5.8 Masged color image	94
Fig. 5.9 Madina color image	94
Fig. 5.10 Lena color image	95
Fig. 5.11 Brain color image	95
Fig. 5.12 Diagram color image	96
Fig. 5.13 Denoising Enhancement versus noise power for Diagram image	96
Fig. 5.14 Denoising Enhancement versus noise power for Lena image	97
Fig. 6.1 The block diagram of the proposed algorithm for the encoder	108
Fig. 6.2 The block diagram of the proposed algorithm for the decoder	109
Fig. 6.3 Lena image	110
Fig. 6.4 Masged image	111

List of Tables

Table 2.1 The residue sequence for the moduli set $m=\{3, 4, 5\}$	34
Table 2.2 ROM contents	38
Table 3 Execution time of Masged image	71
Table 4.1 Execution time in seconds for the used images	80
Table 4.2 Correlation between the detected edge image and the original image	81
Table 5.1 SNR and denoising enhancement values for gray scale images	90
Table 5.2 SNR and denoising enhancement values for color images	93
Table 6.1 Lena image using RNS method	110
Table 6.2 Masged image using RNS method	111

List of Abbreviations

A/D Analog to Digital

CD Compact Disk

CDMA Code Division Multiple Access

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CR Compression Ratio

CRT Chinese Reminder Theorem

CWT Continuous Wavelet Transform

DCT Discrete Cosine Transform

DSP Digital Signal Processing

DVD Digital Video Disk

DWT Discrete Wavelet Transform

ECL Emitter Coupled Logic

FBI Federal Bureau of Investigation

FFT Fast Fourier Transform

FIR Finite Impulse Response

FT Fourier Transform

IDWT Inverse Discrete Wavelet Transform

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite Impulse Response

JPEG Joint Photographic Experts Group

LNS Logarithmic Number System

LoG Laplacian of Gaussian

LSB Least Significant Bit

MOS Metal Oxide Semiconductor

MRC Mixed Radix Conversion

MRA Multi Resolution Analysis

MSB Most Significant Bit

NaN Not a Number

OFDM Orthogonal Frequency-Division Multiplexing

PC Personal Computer

PDEs Partial Differential Equations

PR Perfect Reconstruction

PROM Programmable Read Only Memory

PSNR Peak Signal to Noise Ratio

RAM Random Access Memory

RCA Radio Corporation of America

RNS Residue Number System

RoI Region of Interest

ROM Read Only Memory

SNR Signal to Noise Ratio

STFT Short Time Fourier Transform

TDMA Time Division Multiple Access

TTL Transistor Transistor Logic

VLSI Very Large Scale Integration

WS Wavelet Series