بسم الله الرحمن الرحيم "وقل رب زنني علماً " صنى الله العظيم

EFFECT OF GREEN TEA EXTRACT (EPIGALLOCATECHIN GALLATE) ON CYCLIN D1, FAS/APO-1/CD95 AND ULTRASTRUCTURE IN 4NITROQUINOLINE 1-OXIDE-INDUCED RAT TONGUE NEOPLASM

Thesis

Submitted In Partial Fulfillment Of The Requirement For The Ph.D. In Oral Biology

By

AMIRA ELHAM AHMED FARES

(B.D.S & M.D.S)

Oral Biology Department
Faculty Of Oral And Dental Medicine
Cairo University
2009

SUPERVISOR

PROF. DR. NAHED ABD EL-SALAM KHALIL

Professor Doctor, Oral Biology Department
Faculty Of Oral And Dental Medicine
Cairo University

CO-SUPERVISOR

PROF. DR. AMAL HASAN ABD EL-RAHMAN

Professor Doctor, Oral Pathology Department
Faculty Of Oral And Dental Medicine
Cairo University

ثير مستخلص الشاي الأخضر (إبيجالوكاتيكين جاليت) على سايكلين د و على التركيب المجهري الدقيق في ورم و على التركيب المجهري الدقيق في ورم الكسيد - نيتروكينولين

رسالة مقدمة من الطبيبة/ أميرة الهام أحمد فارس المساعد بقسم بيولوجيا الفم توطئة للحصول على درجة دكتوراة الفلسفة في بيولوجيا الفم بيولوجيا الفم

كلية طب الفم و الأسنان

جامعة القاهرة ٢٠٠٩

تحت إشراف

أ.د/ ناهد عبد السلام خليل أستاذ بقسم بيولوجيا الفم كلية طب الفم و الأسنان جامعة القاهرة (مشرف)

أ.د/ أمل حسن عبد الرحمن
 أستاذ بقسم باثولوجيا الفم
 كلية طب الفم و الأسنان
 جامعة القاهرة

(مشرف مساعد)

Key words: EGCG, 4-NQO, Tongue, Neoplasm, Rat, Neoplasm, Green tea, Cyclin D1, Fas, Ultrastructure.

Abstract:

Objective: The aim of the present study was to investigate the prophylactic and therapeutic effects of green tea extract (Epigallocatechin gallate) (EGCG) on 4-Nitroquinoline-1-Oxide (4-NQO)-induced tongue neoplasm through histopathological immunohistochemical ultrastructural examinations. Methods: fifty adult male albino rats were used in this investigation and were classified into five groups ten rats for each. Group I was used as control, group II received 65 mg/Liter of EGCG group III received 5 mg/Liter of 4-NQO in drinking water for 30 weeks, group IV received 65 mg/Liter of EGCG and 5 mg/Liter of 4-NQO in drinking water for 30 weeks and group V received 5mg/Liter of 4nitroquinoline 1-oxide in drinking water for 30 weeks followed by 65mg/Liter of EGCG for additional 4 weeks. Results: 4-NQO resulted in the formation of severe epithelial dysplasia, overexpression of cyclin D1and down regulation of FAS expression in the induced tongue neoplasm. EGCG produced down regulation in the cyclin D1and increase in FAS induced apoptosis in the tumor developed by 4-NQO. On the ultrastructural level 4-NQO produced elongated basal cells with increased intercellular spaces, destruction of desmosomes and discontinuity of the basal lamina, while EGCG was resulted in nearly normal basal cells with narrow intercellular spaces, desmosomal junctions between adjacent cells and a continuous basal lamina. **Conclusion:** EGCG has a prophylactic but not therapeutic effect against 4-NQO-induced rat tongue neoplasm.

Acknowledgement

Firstly, I would like to express my deepest gratitude and thanks to **ALLAH** whose magnificent help is the first factor in our success.

I would like also to express my deepest thanks and appreciation to **Prof. Dr. Nahed Abd El-Salam Khalil** for her instructive leading comments, continuous encouragement and kind advice during the progress of this work.

My deepest feelings of appreciation and gratitude to **Prof. Dr. Amal Hasan Abd El-Rahman** for her efforts, kind suggestions and the time she spent toward the completion of this study.

My deepest thanks to the head of the department, all staff members and colleagues in the Oral Biology Department.

Finally, I would like to express my grateful thanks and endless appreciation to my parents and my husband for understanding, love and continuous support.

To My Parents

To My Husband

And To My Lovely Son

Ibrahim

LIST OF CONTENTS

	Page
Introduction	1
Review of Literature	
Green Tea	3
Mechanisms of cancer prevention by green tea	3
Green tea, Angogenesis and Metastasis Prevention	5
Green tea and cancer prevention	6
Green tea & oral cancer	8
Green tea and cell cycle	9
Green tea and apoptosis	10
Cell cycle	12
Cyclins	14
Role of cyclin D1 as a growth stimulator	16
Regulation of cyclin D1 expression	17
Expression of cyclin D1 in normal tissues	18
Cyclin D1, Cellular adhesion and Motility	19
Functions of cyclin D1 as an oncogene	20
Cyclin D1 and head and neck squamous cell carcinoma	22
Apoptosis	24
Molecular regulation of apoptosis	
Apoptotic pathways	27
Apoptosis signaling by FAS receptors	30
FAS and its relation to the tumor suppressor P53	31
Importance of FAS induced apoptosis	32
FAS antigen expression	35
FAS expression in malignant cells	36
FAS expression in oral tumors	37
The ultrastructure of normal oral mucosa	40
Ultrastuctural pathology of experimental oral carcinoma	43
Ultrastructural changes in oral squamous cell carcinoma	46

Aim of the study	48
Materials and Methods	49
Results	
Histopathological Results	60
Immunohistochemical Results	
A) Cyclin D1 Results	75
B) Fas Results	83
Ultrastructural Results	90
Statistical Results	128
Discussion	134
Summary	152
Conclusion	158
References	160

LIST OF FIGURES

	page
Fig. (1): Phases of the cell cycle	13
Fig. (2): Apoptosis	25
Fig. (3): The way of caspases activation	27
Fig. (4): The pathways of apoptosis	29
Fig. (5): The area % of immunoreaction	59
Figs.(6&7): Photomicrographs of the dorsal surfaces	
of the tongues of the control group (H&E)	63
Figs. (8-11): Photomicrographs of the dorsal surfaces	
of the tongues of the EGCG group (H&E)	65
Figs. (12-17): Photomicrographs of the dorsal surfaces	
of the tongues of the 4-NQO group (H&E)	68
Figs. (18-20): Photomicrographs of the dorsal surfaces	
of the tongues of the prophylactic group (H&E)	72
Figs. (21-24): Photomicrographs of the dorsal surfaces	
of the tongues of the therapeutic group (H&E)	75
Figs. (25&26): Photomicrographs of the dorsal surfaces	
of the tongues of the control group (Cyclin D1)	78
Figs. (27&28): Photomicrographs of the dorsal surfaces of the tongues of the EGCG group (Cyclin D1)	79
Figs. (29-31): Photomicrographs of the dorsal surfaces of the tongue of the 4-NQO group (Cyclin D1)	80
Figs. (32&33): Photomicrographs of the dorsal surfaces	Page

of the tongues of the prophylactic group (Cyclin D1)	83
Figs. (34&35): Photomicrographs of the dorsal surfaces of the tongues of the therapeutic group (Cyclin D1)	84
Figs. (36&37): Photomicrographs of the dorsal surfaces of the tongues of the control group (FAS)	86
Figs. (38&39): Photomicrographs of the dorsal surfaces of the tongues of the EGCG group (FAS)	87
Figs. (40&41): Photomicrographs of the dorsal surfaces of the tongue of the 4-NQO group (FAS)	88
Figs. (42&43): Photomicrographs of the dorsal surfaces of the tongues of the prophylactic group (FAS)	90
Figs.(44&45): Photomicrographs of the dorsal surfaces of the tongues of the therapeutic group (FAS)	91
Figs. (46-53): Electron-micrographs of the dorsal surfaces of the tongues of the control group (Uranyl acetate & Lead citrate)	94
Figs. (54&55): Electron-micrographs of the dorsal surfaces of the tongues of the EGCG group (Uranyl acetate & Lead citrate)	103
Figs. (56&64): Electron-micrographs of the dorsal	page
surfaces of the tongues of the 4-NQO group	107

(Uranyl acetate & Lead citrate)	
Figs. (65-68): Electron-micrographs of the dorsal	
surfaces of the tongues of the prophylactic	
group	118
(Uranyl acetate & Lead citrate)	
Figs. (69-74): Electron-micrographs of the dorsal	
surfaces of the tongues of the therapeutic grou	ip 124
(Uranyl acetate & Lead citrate)	
Fig.(75): Mean of area% of cyclin D1 immunoreactivity	134
Fig. (76): Mean of area% of FAS immunoreactivity	135