Study of the sensitivity of lung cancer cell lines to TRAIL-induced apoptosis

Presented by

Yasser Mabrouk Abdel Wahhab Bakr

A Thesis Submitted to Faculty of Science

For the Degree of Ph. D. of Science (Biochemistry)

Chemistry Department Faculty of Science Cairo University

(2010)

ACKNOWLEDGEMENT

Before all and above all. Thanks to ALLAH for everything.

I would like to express my deepest thanks, gratitude and deep appreciation to **Prof.Dr. Abdel Hady A. Abdel Wahhab**, Professor of biochemistry and molecular biology, National Cancer Institute, Cairo University, for his supervision, following the progress of the work with great interest and continuous criticism during the preparation and finalization of the present work.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Mervat El-Sayed Mohammed**, Asst. Professor of Biochemistry, Faculty of Science, Cairo University, for her continuous and meticulous supervision.

Many thanks to **Prof. Or. Nadia M. El-Guendy**, Asst. Professor of Biochemistry and molecular biology, National Cancer Institute, Cairo University, for her great support during the progress of the work and revision and finalizing this work. I shall always be proud that I have worked under her guidance.

Also thanks to **Prof. Or. Mohammed Abou El Hassan** for his suggesting the point of research, planning, directing.

Grateful appreciation is also extended to all staff members of the Cancer Biology Department, National Cancer Institute, Cairo University, for their great help.

ABSTRACT

Name: Yasser Mabrouk Abdel Wahhab

Title of thesis: Study of the sensitivity of lung cancer cell lines to

TRAIL-induced apoptosis

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is an apoptogenic cytokine with great tumor specificity and has been recently considered as the magic bullet in the treatment of cancer. Recently, TRAIL-DR4 and TRAIL-DR5 directed monoclonal antibodies showed anti-tumor effect against a panel of non-small cell lung cancer (NSCLC) cell lines in vitro with different levels of sensitivity to TRAIL-induced apoptosis. The present study was aimed to investigate possible reasons for TRAIL resistance in NSCLC cell lines by searching for mutations at TRAIL receptors levels using single strand conformation polymorphism (SSCP) and at the downstream signaling pathway through determination of survivin isoforms, bcl-2 and p53 levels of expression by RT-PCR in different NSCLC cell lines. Our work identified a Guanine to Cytosine (G626C) point mutation in DR4 of H1299 and A549 cell lines, changing arginine to threonine (R209T). This amino acid is located in the ectodomain of DR4 which is involved in TRAIL binding. The over-expression of wt survivin in some cell lines suggest wt survivin may play a role in TRAIL resistance in SW1573 and to a lesser extent in A549, while increase of the proapoptotic survivin-2B may participate in the increased sensitivity of H460 to TRAIL induced apoptosis. On the other hand, results of H1299 cell line suggest that TRAIL apoptotic signaling may be different than in the other examined cell lines since high levels of anti-apoptotic survivin does not have an effect on the sensitivity of this cell line to TRAIL.

Keywords: TRAIL, bcl-2 and p53

Supervisors:-

- 1. Prof. Dr. Mervat El- Sayed Mohammed
- 2. Prof. Dr. Abdel-Hady Ali Abdel-Wahhab
- 3. Dr. Nadia Mohammed El-Guendy
- 4. Prof. Dr. Sayed Kamel Goda

Prof. Dr.Mohammed Ahmed Badawy

Chairman of chemistry Department Faculty of Science-Cairo University

APROVAL SHEET FOR SUMISSION

Thesis Title: Study of the sensitivity of lung cancer cell lines to TRAIL-induced apoptosis

Name of candidate: Yasser Mabrouk Abdel Wahhab

This thesis has been approved for submission by the supervisors:

- 1- Prof. Dr. Mervat El- Sayed Mohammed
 Signature:
- 2- Prof. Dr. Abdel-Hady Ali Abdel-Wahhab Signature:
- 3- Dr. Nadia Mohammed El-Guendy Signature:

Prof. Dr.Mohammed Ahmed Badawy

Chairman of chemistry Department Faculty of Science- Cairo University

Table of Contents

	Acknowledgment	
	Introduction	1
I-	REVIEW OF LITERATURE	3
	Lung Cancer	3
	1- Incidence	3
	2- Etiology	3
	3- Histological typing, pathogenesis and staging of lung tumors	6
	4- Molecular Markers of Prognosis	8
	5- Modes of Metastasis	10
	6- Staging and Diagnosis	10
	7- Methods of diagnosis	10
	8- Chemoprevention	12
	9 Lung cancer therapy	12
	Apoptosis	14
	1- The importance of apoptosis	14
	2- Morphological features of apoptosis	15
	3- Molecular mechanisms of apoptotic signaling	16
	4- Apoptotic signaling pathways	17
	5- Regulation of the mitochondrial membrane permeabilization	19
	6- Regulation of apoptosis	20
	7- TRAIL-induced apoptosis	20
	AIM OF THE WORK	31
II-	MATERIAL AND METHODS	33
	1- Cells and Culture Conditions	33
	2- Detection of Death Receptors mutations by Single Strand	36
	Conformation Polymorphism (SSCP)	
	3- Semi-quantitative reverse transcriptase polymerase chain	46
	reaction (RT-PCR) analysis of surviving, bcl-2 and P53	
III-	RESULTS	53
	1- Identification of mutation in TRAIL receptors DR4 and DR5 in	53
	lung cancer cell lines by SSCP	
	2- Determination of expression of survivin isoforms, P53 and Bcl-2	61
IV-	DISCUSSION	67
V-	SUMMARY	77
$\mathbf{V}\mathbf{I}_{-}$	REFERENCES	79

LIST OF TABLES

No	Title	Page
1	primer sequences and lengths of PCR amplified products for DR4 and DR5 genes.	38
2	Primer sequence and fragment lengths for survivin isoforms, bcl-2, p53 and β -actin genes. F stands for forward primer and R for reverse.	51
3	Band shifts summary: This table shows the band shifts found by SSCP in different exons of the TRAIL death receptors genes in different cell lines.	56
4	Fold change of gene expression in different cell lines The table shows the fold change of genes expression in the different cell lines normalized to β -actin as house-keeping gene.	62
5	Result Summery, this table summarize all results obtained in this work.	75

LIST OF FIGURES

No	Title	Page
1	Difference between apoptosis and necrosis	15
2	The intrinsic pathway	18
3	The extrinsic pathway	19
4	Cytotoxic effects of TRAIL therapy in NSCLC cells	24
5	Bcl-2 protein family	26
6	PCR product of two regions of exon 10 of DR4 of TRAIL in different cell lines examined giving two bands at 273 and 206 base pair (bp), M is the ladder DNA marker.	53
7	SSCP Mobility shifts in DR4	55
8	SSCP Mobility shifts in DR5:	56
9	Alignment of exon 4 sequence with DR4 gene	59
10	Alignment of DR 4 translated protein sequence with DR4 protein	60
11	Expression levels of different genes in the different cell lines	61
12,13	Expression levels of different genes in the different cell lines	63,64
14	(Charts) Genomic structure of the coding region of the human DR4 gene.	69
15	DR4 Cysteine rich domain (CRD):	71

List of Abbreviations

Apaf-1 : Apoptotic Protease Activating Factor 1

APS : Ammonium Persulfate ATP : Adenosine Tri-Phosphate

Bcl-2 : B-Cell Lymphoma Predominance

BH Bcl-2 Homology Domain

Bid : BH3 Interacting Domain Death Agonist

BIR : Baculovirus IAP Repeat CARD : Caspase Recruitment Domain

Cc : Cubic Centimetre

cFLIP : Cellular FLICE Inhibitory Protein

COX-2 : Cyclooxygenase CT : Computed Tamograph DcR1 or DcR2 : Decoy Receptor 1 Or 2

DD : Death Domain

DED : Death Effector Domain

DISC : Death Inducing Signaling Complex

DMSO : Dimethyl Sulphoxide DR4 or DR5 : Death Receptor 4 Or 5

DTT : Dithiothreitol

E.M : Electroon Microscopy EGF : Epidermal Growth Factor

EGFR : Epidermal Growth Factor Receptor EGFR : Epidermal Growth Factor Receptor

ErbB2 :Erythroblastic Leukemia Viral [V-Erb-B] Oncogene

Homologue, Avian

FADD : Fas-Associated Death Domain

FBS : Fetal Bovine Serum

FHIT : Fragile Histidine Triad

FNA : Fine Needle Aspiration

FOB : Fiber-Optic Bronchoscopy

HIV : Human Immunodefiency Virus

IAP : Inhibitors Of Apoptosis

K-ras : Kirsten rat sarcoma viral oncogene homolog

NAIP : Neuron-Specific Members NHL : Non-Hodgkin's Lymphoma

NNK :Nitrosamine-4-(Methylnitrosamino)-1-(3-Pyridil)-1-Butanone

NSCLC : Non Small Cell Lung Cancer

P53 : Tumor protein 53 P53BSs : P53 Binding Sites

PAHs : Polycyclic Aromatic Hydrocarbons

PBS : Phosphate Buffered Saline PCD : Programmed Cell Death SCLC : Small Cell Lung Carcinoma

SSCP : Single Strand Conformation Polymorphism

TBE : Tris Borate EDTA

TEMED : N,N,N',N'-Tetramethylethylenediamine

TM : Trans-Membrane

TNFR : Tumor Necrosis Factor Receptor

TNM : Tumor-Node-Metastasis

TRADD : TRAIL-Associated Death Domain

TRAIL : Tumor Necrosis Factor Related Apoptosis Inducing Ligand

WHO : World Health Organization

Wt : Wild Type

Introduction

Introduction

Cancer is a class of diseases characterized by uncontrolled cell growth. There are over 100 different types of cancer; each is identified by the type of cell that is initially affected.

Cancer harms the body when damaged cells divide uncontrollably to form masses of tissue called tumors (except in the case of leukemia where cancer prohibits normal blood function by abnormal cell division in the blood stream). Tumors can grow and interfere with the digestive, nervous, and circulatory systems and they can release hormones that alter body function. Tumors that stay in one region and demonstrate limited growth are generally considered to be benign. When a tumor successfully spreads to other parts of the body and grows, invading and destroying other healthy tissues, it is said to have metastasized. The result is a serious condition that is very difficult to treat. (Hanahan and Weinberg, 2000).

Review of Literature

I-REVIEW OF LITERATURE Lung cancer

1 – Incidence

Lung cancer ranks among the most commonly occurring malignancies and currently is the leading cause of cancer-related deaths worldwide (*Peto et al., 1999*). In the United States, lung cancer is the most common cause of cancer-related deaths in men as well as in women, with an incidence approximately 70 per 100,000 individuals (*Jemal et al., 2004*). Lung cancer currently accounts for one-third of all cancer-related deaths in the European Union (*Bray et al., 1999*).

In Egypt, lung cancer ranked the fourth most common cancer after bladder, liver and non-Hodgkin's lymphoma (NHL) with 6.1% in male and 1.3% in female with male/female ratio 4.7. Where it ranks number one in Tunisia, Algeria and Jordan. In Egypt, Non Small Cell Lung Cancer (NSCLC) including squamous cell carcinoma, adenocarcinoma accounts for about 59 % of all lung cancer patients where small and large cell carcinoma accounts for about 11% only (El Attar, 2005).

The global rise in lung cancer incidence, together with the fact that the overall 5-year survival of patients with this disease is less than 15%, underscores the magnitude of the lung cancer epidemic.

2 – Etiology

A – Smoking

The vast majority of NSCLCs are caused by cigarette smoking. In the United States approximately 80% of lung cancer deaths in men and women are directly attributable to tobacco abuse (*Giovino*, 2002). Cigarette smoke contains over 300 chemicals, 40 of which are known to be potent carcinogens. Of particular significance, nitrosamine 4-(methylnitrosamino)-1-(3-pyridil)-1-butanone (NNK), and polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (*Malkinson*, 1992). PAH in tobacco smoke form DNA adducts, the extent of which correlates with tobacco exposure in target tissues (*Vineis et*

al., *2004*). In addition, PAHs induce mutations within the p53 tumor suppressor gene, which regulates cell-cycle progression, DNA repair, and apoptosis.

The risk of lung cancer is related to duration as well as intensity of smoking. Using data from two large case-control studies in Britain, Peto et al., (2000) observed that persistent smoking was associated with a 16-fold increase in cumulative lung cancer risk, and that this risk doubled if smoking commenced before age 15. Data from the Cancer Prevention Study II trial indicate that smoking one pack of cigarettes per day for 30 years increases risk of lung cancer–specific mortality 20- to 60-fold in men and 14- to 20-fold in women compared to risk in those who never smoked. The risk nearly doubles if consumption persists for 40 years (*Alberg and Samet*, 2003).

B – Genetic Predisposition

Whereas the vast majority of lung cancers are attributable to cigarette smoking, fewer than 20% of smokers develop this disease. Although these observations suggest a genetic predisposition to lung cancer, to date, the genes conferring susceptibility to this disease remain elusive. Braun *et al.* conducted a large twin cohort study and observed no genetic factors to be predictive of lung cancer (*Braun et al.*, 1994). However, several recent studies indicate an increased risk of lung cancer among first-degree relatives of persons with this disease. Hemminki et al observed a threefold increase in lung cancer risk among siblings of patients with lung cancer (*Hemminki et al.*, 2004). Etzel et al, observed a significant familial aggregation of lung cancer among patients with late-onset but not early-onset (before 50 years of age) lung cancer (*Etzel et al.*, 2003).

A number of carcinogens in tobacco smoke are potential mutagens, and several studies indicate that polymorphisms involving genes that regulate DNA repair may be associated with increased risk of lung cancer, also inflammation and reactive oxygen species contribute to the pathogenesis of lung cancer (Ballaz and Mulshine, 2003; Campa et al., 2003)