The Role of Magnetic Resonance Enterography in Diagnosis of Crohn's Disease

Essay

Submitted for partial fulfillment of the master degree in diagnostic radiology

 $\mathcal{B}y$

Shimaa Mohammed Mohammed Salim

M.B.,B.Ch Zagazig university

Under the supervision of

Prof. Dr. Zenat Ahmed El-Sabbagh

Assistant Professor of Diagnostic Radiology Faculty of Medicine Ain Shams University

Dr. Remon Zaher Elia

Lecturer of Diagnostic Radiology
Faculty of Medicine
Ain Shams University

Faculty of medicine Ain shams university 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Zenat Ahmed El-Sabbagh**, Assistant Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Remon Zaher Elia**, Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Shimaa Mohammed Mohammed Salim

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Anatomical considerations	5
Pathological and clinical aspects of Crohn's Disease	18
Techniques of magnetic resonance enterography(MRE) .	39
Imaging Interpretation and Normal MRE	60
MRE Manifestations of Crohn's Disease	70
Illustrative Cases	101
Summary	122
Conclusion	125
References	126
Arabic Summary	

List of Abbreviations

2D : Two dimensions
3D : Three dimensions

ADC : Apparent diffusion coeffcient

CD : Crohn's disease

CT : Computed tomography

DCE-MRI : Dynamic-contrast enhanced magnetic

resonance imaging

DWI : Diffusion-weighted imaging

FLASH : Fast Low Angle Shot

FIESTA: Fast imaging employing steady - state

acquisition

GBCAs : Gadolinium-based contrast agents

Gd : Gadolinum

GIT : Gastro intestinal tract

HASTE : Half-Fourier acquisition single-shot turbo

spin echo

IBD : Inflammatory bowel disease

IMA : Inferior mesenteric artery

IV : Intra venous

MRE : Magnetic resonance enterography

MRI : Magnetic resonance imagingNES : Nephrogenic systemic fibrosis

PEG : Polyethylene glycol

SB : Small bowel

SBFT : Small bowel follow throughSMA : Superior mesenteric arterySMV : Superior mesenteric vein

SPACE : Sampling Perfection with Application

oriented Contrasts using

SSFSE : Single - shot fast spin echo

T1WI : T1 weighted image T2WI : T2 weighted image

TPN : Total Parenteral Nutrition

UC : Ulcerative colitis

VIBE : Volume Interpolated Breathhold Examination

List of tables

Table	Title	Page
1.1	Difference between jejunum and ileum	11
	are outlined	
2.1	Difference in disease characteristics	38
	between crohn's disease and ulcerative	
	colitis	
3.1	Summary of several intra-luminal	43
	contrast agents that are used and their	
	associated limitations.	
3.2	MREsequences	48
5.1	Diagnostic characteristics of MRE,CT	100
	and endoscoy in CD	

List of Figures

Fig.	Title	Page
1.1	Small intestine. Small and large intestine in situ	5
1.2	Relations of duodenum	6
1.3	Internal view of the caecum showing the	9
	ileocaecal valve.	
1.4	Greater omentum and mesentery of small	10
	intestine.	
1.5	Small intestine :Layers of wall of small	11
	intestine	
1.6	Histology of the small intestine	12
1.7	Arteries of jejunum and ileum	15
1.8	Diagram of the vascular supply to the small,	15
	large bowel.	
2.1	Number of ulcerative colitis and Crohn's	20
	disease cases over the first, second and last five	
	years of the 15 years duration	
2.2	Aphthous ulcers coalesce into larger ulcers.	23
2.3	CD. A, Cobblestone mucosa with stricture. B.	24
	String' sign	
2.4	CD in the ileum. Numerous aphthous ulcers are	24
	seen in this segment.	
2.5	Along, tight stricture of the terminal ileum	25
_	characteristic of CD.	
2.6	CD of ileum, showing narrowing of the lumen.	26
2.7	Crohn's disease, a segment (arrow) in which	27
	the wall is thickened by inflammation and	
2.0	fibrosis	20
2.8	An ileoscopic biopsy from a patient with CD.	28
2.0	Showing villous architectural abnormalities.	20
2.9	Crypt architectural disturbance, CD.	28
2.10	CD. Rectal biopsy showing a granuloma.	29
2.11	Low-power histology of CD.	30
2.11	CD. A The wall of terminal ileum is markedly	33
	thickened and a number of fissure ulcers are	
	seen.	
2.13	Fistulizing CD.	34

List of Figures (Cont.)		
Fig.	Title	Page
2.14	Dysplasia in small intestinal Crohn's disease.	35
2.15	Difference in disease characteristics between	38
	Crohn's disease and ulcerative colitis.	
3.1	Coronal T1 weighted three-dimensional	40
	gradient echo image of the abdomen after	
	ingestion of positive enteric contrast agent .	
3.2	Use of negative enteric contrast material	41
	improve the conspicuity of inter-loop abscess in	
	a patient with CD.	
3.3	Intra luminal biphasic contrast agent .	42
3.4	Coronal HASTE images sequentially acquired	45
	at multiple time points (a - c).	
3.5	Coronal HASTE images obtained in the same	47
	patient in supine (a) and prone position (b).	
3.6	Coronal HASTE image demonstrating T2	49
	contrast and clear depiction of the intestinal	
	wall.	
3.7	High-quality images of small intestine acquired	51
	by true-FISP sequence.	
3.8	Coronal (A), axial (B), and sagittal (C) real	52
	time multiplanar reconstructions of three-	
	dimensional image data.	
3.9	Coronal fat-suppressed 2D GE T1-weighted	52
	image obtained before (a) and after IV. contrast	
	medium administration (b).	
3.10	Crohn's colitis in a pregnant patient.	53
3.11	DWI and apparent diffusion coeffcient (ADC)	55
	map of inflamed bowel wall.	
3.12	Dynamic-contrast enhanced magnetic resonance	56
	imaging (DCE-MRI) findings in inflamed terminal	
	ileum and in a normal segment.	

Dist of Figures (cont.)		
Fig.	Title	Page
4.1	Pre (left) & post-contrast (right) T1-weighted fat-suppressed image of terminal ileum.	61
4.2	Coronal T2WI demonstrating well-distended normal jejunal loops.	62
4.3	Coronal True FISP image. Different parts of duodenum.	63
4.4	Coronal MR enterography coronal image of the jejunum demonstrating a normal mucosal, mural and fold pattern which are well visualized	64
4.5	Multiple small mesenteric lymph nodes .	65
4.6	(a) Normal barium follow-through. The small intestine, ascending and transverse colon are filled with barium. (b) Normal terminal ileum	66
4.7	Use of positive intraluminal contrast medium. Contrast material-enhanced CT scans of the abdomen.	67
4.8	Use of negative oral contrast medium. Coronal contrast-enhanced reformatted CT scan of the abdomen.	68
5.1	Measurement of intestinal wall thickness with the workstation tools (T2-weighted axial view)	71
5.2	Wall thickening. Magnified coronal HASTE (a) and TrueFISP (b)	72
5.3	Cobblestone appearance" in CD.	73
5.4	T2 signal hyper intensity of the bowel wall. Coronal FIESTA (A) and axial SSFSE (B).	74
5.5	Coronal (A) and axial (B) fat-suppressed T1-weighted sequence after administration of intravenous gadolinium shows hyper enhancement and mural thickening of the descendent colon.	75

Fig.	Title	Page
5.6	Pattern I of mural enhancement-mucosal hyper	76
3.0	enhancement in active CD.	70
5.7	Stratified pattern. (A) Coronal T1-weighted fat-	77
3.7	suppressed image and IV contrast. (B) Axial	, ,
	image with IV contrast.	
5.8	Pattern III of mural enhancement - homogenous	78
2.0	transmural enhancement in active CD.	, 0
5.9	Mesenteric edema.	79
5.10	"Comb sign" in CD. Coronal GE T1-weighted	80
2.10	and fat-saturated image, obtained after IV	00
	injection of gadolinium.	
5.11	Coronal fat-suppressed T1-weighted sequence	81
0.11	a) before and b) after administration of IV Gd	01
	shows enlarged lymph nodes with high signal	
	intensity (arrow).	
5.12	Axial (A) and coronal (B) balanced gradient-	82
	echo T2-weighted (true FISP) sequences show	
	fibrofatty proliferation of the mesentery with	
	mass effect and separation of bowel loops (*)	
5.13	Chronic thickening of ileum bowell wall with	83
	poor enhancement (arrow), a finding that	
	suggests chronic disease.	
5.14	Water halo. Axial and coronal HASTE a), c)	84
	and Fat sat HASTE b), d).	
5.15	Fat halo - Coronal section of a thickened ileum	85
	loop.	
5.16	Pseudo diverticula and Pseudo polyposis .	86
5.17	Patient with fibro stenotic disease.	87
5.18	Example of fibro stenotic disease in a patient	88
	with previous ileocolic resection.	
5.19	T2-weighted coronal sequence with fat	89
	suppression showing an enterovesical fistula	
	(arrows)	

Fig.	Title	Page
5.20	Enteroenteral fistula. Coronal GE T1-weighted image showing a "stellate pattern" and "star sign"	90
5.21	Appearance of an inflammatory mass or mesenteric phlegmon	91
5.22	Abscess of the psoas muscle (asterisk), produced by an ileal fistular tract (arrows).	92
5.23	Strictures. a) Coronal constrast enhanced T1 VIBE b) Coronal contrast enhanced T1 VIBE.	93
5.24	71-year-old woman with known CD shows large mass arising from jejunum (<i>arrow</i>) with adjacent lymphadenopathy.	95
5.25	Active Crohn lesions at the distal ileum.	96
5.26	Mesenteric border ulceration and ileoileal fistula.	96
5.27	Coronal computed tomography views show slightly increased enhancement in the mucosa of the terminal ileum near the ileocecal valve.	97
5.28	Yellow arrows indicate bowel wall thickening with stenosis of the terminal ileum in a 30-year-old CD patient	99
6.1	Case 1: patient with transmural ulcer	101
6.2	Case 2 : active CD	102
6.3	Case 3 : chronic CD	103
6.4	Case 4 : Chronic CD	105
6.5	Case 5 : Complicated CD	107
6.6	Case 6: fistulizing CD	110
6.7	Case 7: mechanical obestruction	112
6.8	Case 8: fistula to left ovary	115
6.9	Case 9: pregnancy with complicated CD	116
6.10	Case 10 : perianal fistula	118
6.11	Case 11 :case with good response to treatment	121

Introduction

Crohn's Disease (CD) is a chronic, relapsing, and remitting inflammatory bowel disease, which is characterized by transmural, patchy, granulomatous inflammation. The disease can affect any part of the gastrointestinal tract, however, ileocolic (right lower quadrant) disease is most commonly seen (*Carucci and Levine*, 2002).

The etiology of CD remains unclear, but there is increasing evidence that genetic as well as environmental factors play a role in causing a sustained activation of mucosal immune responses (*Podolsky*, 2002).

The incidence of Crohn's disease seems to be bimodal, the first peak occurs in late adolescence and early adulthood, while a second, smaller increase in incidence can be seen between the fifth and seventh decades of life (*Loftus*, 2004).

Prevalence in many developed countries is estimated at 0.1% (*Horsthuis et al.*,2005).

Traditionally, small-bowel follow through (SBFT) examination has been the standard radiologic approach used to assess patients with active CD, as more than 70% of patients have involvement of the small intestine. Small-bowel enteroclysis has been reported to be more accurate than SBFT at detecting early mucosal lesions but requires nasojejunal intubation. Both methods provide only limited and indirect information in regard to the state of the bowel wall and extraluminal extension of CD (*Bruining and Loftus*, 2006).

Introduction and Aim of the Work

Cross-sectional imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) are advantageous in their ability to visualize superimposed bowel loops and to improve visualization of extra luminal findings and complications (*Guimarães et al.*, 2010).

Thus, CT enterography has become accepted as a noninvasive imaging technique to evaluate CD. It allows direct visualization of extra enteric structures and can reliably identify active inflammation in the small intestine (Masselli et al., 2008).

However, because patients with CD often require multiple imaging studies over their lifetime, MR enterography (MRE) has been introduced as a radiation-free alternative method to evaluate patients with CD (*Fidler*, 2007).

In CD, formation of perianal fistulas and/or abscesses can be seen in a large percentage of patients. There is a tendency towards imaging of these fistulas, given that in CD fistulas can be very extensive and complex, rendering the conventional gold standard diagnostic technique (i.e., examination under anesthesia) is not wholly accurate (Halligan and Buchanan 2003).

MRE is a technique that has evolved in the last decade. It involves the use of MRI to assess the small bowel, following distension with an oral contrast agent. Recent technologic advances in the field of MRI, such as the development of high-field-strength MRI, fast-acquisition sequences, and improved software, allow examination of the gastrointestinal tract (GIT) with this modality. MRI provides multi planar images with excellent soft-tissue contrast with use of minimally invasive techniques and lack of radiation exposure, which is relevant in young patients who need to be

Introduction and Aim of the Work

reassessed on multiple occasions over the course of these chronic conditions (Martin et al., 2007).

MRE more accurately depict submucosal pathology in transmural CD, including determining the presence and extent of inflammation, fibrotic disease, and other intraabdominal complications, compared to other diagnostic modalities, including CT. Further evidence supports that another diagnostic strength of MRE is the ability to differentiate inflammation from fibrosis within submucosa of the bowel wall and within the peri-enteric tissues. MRE can show enteric as well as extra-enteric complications, including bowel obstruction, abscesses, and fistulae. These manifestations may be tethering, visualized on MRE with less dependency on bowel distension as required for optimal CT imaging (Tiwari et al.,2013).