# Effect of Probiotics Supplementation on Serum Level of II1 and II6 in Infants

#### **Thesis**

Submitted for Partial Fulfillment of Master Degree
In Pediatrics

## $\mathbf{B}\mathbf{v}$

Nehad Ezzat Mohammed El-Nawwam M.B., B. Ch. Faculty of Medicine, Ain Shams University

## Supervised by

## Prof. Dr. Hamed Ahmed El-Khayat

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

## **Dr. Ahmed Mohammed Hamdy**

Assistant Professor of Pediatrics
Faculty of Medicine- Ain Shams University

## Prof. Dr. Dina Adel Fouad

Professor of Clinical Pathology
Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2013



First of all, my deepest and greatest gratitude and thanks to God for helping and supporting me to present this modest work.

In fact, I can't find meaningful words to express my extreme thankfulness, profound gratitude and deep appreciations to my eminent **Prof. Dr. Hamed Ahmed El-Khayat** Professor of Pediatrics Faculty of Medicine- Ain Shams University for his majestic generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Also I'm deeply grateful to **Dr. Ahmed Mohammed Hamdy** Assistant Professor of Pediatrics Faculty of Medicine-Ain Shams University who supported me through devoting his time, to facilitate the production of this work.

And special thanks to **Prof. Dr. Dina Adel Fouad** Professor of Clinical Pathology Faculty of Medicine- Ain Shams University for her great, great efforts, unlimited experience and support throughout this work.

Finally, I would like to express my deepest thankfulness to my **Family special my parents and my husband for** their great help and support whom without I could do nothing.

Nehad Ezzat Mohamed





سورة البقرة الآية: ٣٢

# List of Contents

| Subject                                          | Page |
|--------------------------------------------------|------|
| List of Abbreviations                            | Ι    |
| List of Tables                                   | IV   |
| List of Figures                                  | VI   |
| Introduction                                     | 1    |
| Aim of the Work                                  | 4    |
| Review of Literature                             |      |
| Chapter (1): Probiotics                          | 5    |
| Chapter (2): Effect of Breastfeeding on Immunity | 20   |
| Chapter (3): Effect of Probiotics on Immunity    | 40   |
| Chapter (4): Interleukin 1 and Interleukin 6     | 61   |
| Subjects and Methods                             | 81   |
| Results                                          | 95   |
| Discussion                                       | 121  |
| Conclusion                                       | 130  |
| Recommendations                                  | 132  |
| Summary                                          | 133  |
| References                                       | 135  |
| Appendix                                         | 197  |
| Arabic Summary                                   | ١    |

# List of Abbreviations

| Abb.      | Meaning                                          |
|-----------|--------------------------------------------------|
| AAD       | Antibiotic-associated diarrhea                   |
| ADAM      | ADAM metallopeptidase domain                     |
| BALF      | Bronchoalveolar lavage fluid                     |
| CLRs      | C-type lectin receptors                          |
| DAMPs     | Damage-associated molecular patterns             |
| DC-SIGN   | Dendritic Cell-Specific Intercellular adhesion   |
|           | molecule-3- Grabbing Non-integrin                |
| ERK1/2    | Extracellular signal-regulated kinase 1 and 2    |
| FDA       | Food and drug administration                     |
| GCR-alpha | Glucocorticoid receptor                          |
| G-CSF     | Granulocyte-colony stimulating factor            |
| GM-CSF    | Granulocyte-macrophage colony stimulating factor |
| gp130     | Glycoprotein 130                                 |
| HIF-1-α   | Hypoxia-inducible factor-1-α                     |
| IBD       | Inflammatory bowel disease                       |
| ICAM1     | Intercellular adhesion molecule 1                |
| ICE       | Interleukin converting enzyme                    |
| ΙΕΝγ      | Interferon gamma                                 |
| IL-1RAcP  | Interleukin 1 receptor accessory protein         |
| IL6RA     | Interleukin 6 receptor alpha subunit             |
| JAK1      | Janus kinase 1                                   |

| Abb.   | Meaning                                            |
|--------|----------------------------------------------------|
| JAK2   | Janus kinase 2                                     |
| LCPs   | Long-chain polyunsaturated fatty acids             |
| LGG    | Lactobacillus rhamnosus GG                         |
| LIF    | Leukemia inhibitory factor                         |
| MCP1   | Monocyte Chemotactic Protein 1                     |
| M-CSF  | Macrophage- colony stimulating factor              |
| MHC    | Major histocompatability complex                   |
| NF-kB  | Nuclear factor-kappa B                             |
| NK     | Natural killer                                     |
| NLRs   | nucleotide- like receptors                         |
| NLS    | Nuclear localization sequence                      |
| NOD    | nucleotide -binding oligomerization domain         |
| PAMPs  | Pathogen-associated molecular patterns             |
| PGE2   | Prostaglandin E2                                   |
| PRRs   | Pattern recognition receptors                      |
| ROS    | Reactive oxygen species                            |
| SAA    | Serum amyloid A                                    |
| SCID   | Severe combined immunodeficiency                   |
| sIL-6R | Soluble interleukin 6 receptor                     |
| SOCS3  | Suppressor of cytokine signaling 3                 |
| STAT3  | Signal transducer and activator of transcription 3 |
| TGF    | Transforming growth factor                         |

| Abb.   | Meaning                                  |
|--------|------------------------------------------|
| TIMP-1 | Tissue inhibitor of metalloproteinases-1 |
| TLR    | Toll-like receptor                       |
| TNF    | Tumor necrosis factor                    |
| Tyk2   | Tyrosine kinase 2                        |
| VCAM1  | Vascular cell adhesion molecule 1        |
| VEGF   | Vascular endothelial growth factor       |
| ZO-1   | Zona occludens-1                         |

# List of Tables

| Table No.         | Title                                                                                                                            | Page |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|------|
| Table (1)         | Effect of probiotic use                                                                                                          | 8    |
| Table (2)         | Anti-infective and immunological components in human milk                                                                        | 22   |
| Table (3)         | Compounds with immunological properties in human milk                                                                            | 28   |
| Table (4)         | Grading of GIT symptoms                                                                                                          | 86   |
| Table (5)         | Comparison between the three groups regarding socio-demographic parameters                                                       | 95   |
| Table (6)         | Comparison between the three groups regarding frequency of GIT symptoms                                                          | 96   |
| Table (7)         | Comparison between the three groups regarding daily motions and no. of diarrheal attacks                                         | 99   |
| Table (8)         | Comparison between the three groups regarding frequency of gastroenteritis, respiratory tract infections, and overall infections | 102  |
| Table (9)         | Comparison between the three groups regarding (z-score) of anthropometric measures at recruitment                                | 105  |
| <b>Table</b> (10) | Comparison between the three groups regarding (z-score) of anthropometric measures at end of the study                           | 107  |

| Table No.         | Title                                                                                          | Page |
|-------------------|------------------------------------------------------------------------------------------------|------|
| <b>Table</b> (11) | Comparison between the three groups regarding change of anthropometric parameters in (z-score) | 110  |
| <b>Table (12)</b> | Comparison between three groups regarding the lab results at recruitment                       | 113  |
| <b>Table (13)</b> | Comparison between the three groups regarding the lab results at end of the study              | 115  |
| <b>Table (14)</b> | Comparison between the three groups regarding the change of the lab results                    | 118  |
| <b>Table (15)</b> | Correlation between lab results at end of the study with symptomatology                        | 119  |
| <b>Table</b> (16) | Correlation between lab results at end and anthropometric measurements at end of the study     | 120  |

# List of Figures

| Figure No. | Title                                    | Page |
|------------|------------------------------------------|------|
| Figure (1) | Comparison between BF, SF, and           | 97   |
|            | probiotic formula regarding frequency of |      |
|            | infantile colic                          |      |
| Figure (2) | Comparison between BF, SF, and           | 97   |
|            | probiotic formula regarding frequency of |      |
|            | abdominal distension                     |      |
| Figure (3) | Comparison between BF, SF, and           | 100  |
|            | probiotic formula as regard no. of       |      |
|            | diarrheal episodes                       |      |
| Figure (4) | Comparison between BF, SF, and           | 100  |
|            | probiotic formula as regard frequency of |      |
|            | normal bowel                             |      |
| Figure (5) | Comparison between BF, SF, and probiotic | 103  |
|            | formula as regard frequency of           |      |
|            | gastroenteritis                          |      |
| Figure (6) | Comparison between BF, SF, and           | 103  |
|            | probiotic formula as regard frequency of |      |
|            | respiratory tract infections             |      |
| Figure (7) | Comparison between BF, SF, and           | 104  |
|            | probiotic formula as regard overall      |      |
|            | infections                               |      |

| Figure No.  | Title                                                                                         | Page |
|-------------|-----------------------------------------------------------------------------------------------|------|
| Figure (8)  | Comparison between BF, SF, and probiotic formula as regard z-score of WFA at end of the study | 108  |
| Figure (9)  | Comparison between BF, SF, and probiotic formula as regard z-score of BMI at end of the study | 108  |
| Figure (10) | Comparison between BF, SF, and probiotic formula as regard change in z-score of WFA.          | 111  |
| Figure (11) | Comparison between BF, SF, and probiotic formula as regard change in z-score of BMI.          | 111  |
| Figure (12) | Comparison between BF, SF, and probiotic formula as IL-6 at recruitment                       | 114  |
| Figure (13) | Comparison between BF, SF, and probiotic formula as IL-6 at end of the study                  | 116  |
| Figure (14) | Comparison between BF, SF, and probiotic formula as IL-1 alpha at end of the study            | 116  |

## **Introduction**

Probiotics are defined as non-pathogenic organisms that are incorporated into the diet to modify gut microbial ecology, leading to beneficial structural and functional changes in the gut. Probiotics serve as a barrier for the colonization of pathogens to prevent disease and the enhancement of the immune system. In addition, they carry out metabolic functions such as helping the fermentation of non-digestible fibers, and storing energy in the form of short-chain fatty acids. Of all the types of gut microbiota, Bifidobacteria and Lactobacilli are considered the two most essential bacteria beneficial to human health (Penders et al., 2006). Yogurt, cheese, chocolate, and other fermented food are sources of probiotics (Ljungh and Wadstrom, 2009; Sonomoto and Yokota, 2011).

Probiotics use distinct cellular and molecular mechanisms, including blocking pathogenic bacterial effects, regulating immune responses, and altering intestinal epithelial homeostasis by promoting cell survival, enhancing barrier function, and stimulating protective responses (**Vanderpool et al., 2008**). Oral ingestion of Bifidobacteria and Lactobacilli can enhance innate immunity by increasing mucin production, competing and preventing the colonizing of pathogens, reducing gut permeability and helps activate macrophage

production, phagocytosis and NK cell activity. Also can enhance adaptive immunity by enhancing humoral immunity, increasing total and specific secretory IgA in serum and intestinal lumen and shaping of inflammatory gut immune responses (Saavedra and Jose, 2007).

Interleukin-1 alpha and interleukin-1 beta are cytokines that participate in the regulation of immune responses, inflammatory reactions, and hematopoiesis (**Sims et al., 1988**). Interleukin 1 is responsible for the production of inflammation, as well as the promotion of fever and sepsis. IL-1α is produced mainly by activated macrophages, as well as neutrophils, epithelial cells, and endothelial cells. It possesses metabolic, physiological, haematopoietic activities, and plays one of the central roles in the regulation of the immune responses. It binds to the interleukin-1 receptor (**Bankers-Fulbright et al., 1996**; **Dinarello, 1997**).

Interleukin 1 beta (IL-1 $\beta$ ) is a potent mediator in response to infection and injury (**Dinarello, 1998**). It is produced mainly by blood monocytes, but also by macrophages, dendritic cells and a variety of other cells in the body (**Dinarello, 1996**).

IL-6 acts as both a pro-inflammatory and antiinflammatory cytokine. It is secreted by T cells and macrophages to stimulate immune response (van der Poll et al., 1997). It is one of the most important mediators of fever and of the acute phase response. And is capable of crossing the blood brain barrier and initiating synthesis of PGE2 in the hypothalamus, thereby changing the body's temperature setpoint (Banks et al., 1994).

## **Aim of the Work**

The aim of this study is to determine the effect of feeding a probiotics supplemented formula on serum levels of IL1 and IL6 in infants in comparison to BF and those infants fed standard formula.