Cognitive Dysfunction in sample of Egyptian type Diabetic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree Neuropsychiatry

> By Rehab Abd Ellatif Mohamed

> > Supervised by

Prof. Dr. Maged Mohamed Abd Elnasir

Professor of neurology Faculty of Medicine Cairo University

Ass. Prof. Gehan Mahmod Ramzy

Assistant Professor of neurology Faculty of Medicine Cairo University

By los (red) & site of site of

Ass. Prof. Yasser Mohamed Abd Elhameed

Assistant Professor of Internal Medicine Faculty of Medicine Cairo University

> **Faculty of Medicine** Cairo University 2013

تقرير جماعي

عن مناقشة رسالة الماجيستير الخاصه بالطبيبه / رحاب عبد اللطيف محمد توطئه للحصول على درجة الماجيستير في الامراض العصبيه

إجتمعت لجنة المناقشة والحكم على الرسالة المقدمة من الطبيبة/ توطئه للحصول على الماجستير فيالامراض العصبيه والنفسيه والمشكله بقرار من مجلس الكليه والمعتمد من السيد الاستاذ الدكتور / نائب رئيس الجامعة للدراسات العليا وتتكون من الساده الاساتذه:

أ.د. ماجد محمد عبد النصير أستاذ الامراض العصبيه بكليه الطب جامعة القاهره (عن المشرفين)

أ.د. عصام مهدی ابراهیم أستاذ الامراض العصبيه بكليه الطب جامعة الازهر (ممتحن خارجي)

أدمها عاطف زكي أستاذدالامراض العصبيه بكليه الطب جامعةالقاهره (ممتحن داخلی)

وذلك بمشيئة الله تعالى يوم الثلاثاء الموافق ١٠١٣/٩/١٠ بقاعة المؤتمرات بكلية الطب (القصر العيني) جامعة القاهره قاعه (B) في تمام الساعه العاشره صباحا

الرسالة مكونة من ١٤٢ صفحة باللغة الانجليزية + علاوة على ملخص باللغة العربيةيقع في صفحتين واسترشد فيها بـ ٣٣٣ مرجعا

والرساله مكونه من مقدمه وجزء نظرى مكون من ٤فصول وملخص باللغه الانجليزية واللغة العربية وقائمه بالمراجع والجزء العلمي حيث تمت الدراسه علي ٢٠ مريضا يعانون من النوع ٢من مرض السكر و ٢٠ من الاصحاء متوافقين في السن والنوع وتم إخضاع المجموعتين لمجموعه من الإختبارات النفسيهالي جانب الفحص الاكلينيكي واشعه مقطعيه على المخ.

وقد اوضحت الدراسهوجود ارتباط بين مرض السكر ٢ وخلل الوظائف المعرفيه في كلا من التعلم ، الذاكره،الفهم اللفظى و الانتباه مقارنة بمجموعة التحكم.

قررت اللجنة بعد المناقشه:

أ.د.ماجد عبد النصير disiply

أ.د. عصام مهدى Met

أ.د. مها عاظف

Giarles-

I would like to start by thanking "God" for his help during this work as a little part of his generous help throughout my life.

I am greatly honored to express my deep gratitude to **Prof. Dr.**Maged Mohamed Abdel Naser, Professor of Neurology, Faculty of Medicine, Kasr el Aini, Cairo University.

He gave me much of his time, experience, meticulous constructive advice and support. His patience and encouragement were indispensable for completion of this work; no words would fulfill the feeling I have towards his support.

I am very proud and lucky to have Ass. Prof. Dr. Gehan Ramzy Assistant Professor of Neurology, Faculty of Medicine, Kasr el Aini, Cairo University, supervising this work. Her valuable advises from the early beginning of this work are of great value.

I would like to thank Ass. Prof. Dr. Yasser Abdel Hamed, Assistant Professor of internal medicine, Faculty of Medicine, Kasr el Aini, Cairo University for his support, guidance.

I owe lots of thanks and gratitude for all the patients and for all their families for their help.

I would like to thank all Colleagues for their support and encouragement for completion of this work.

Lastly, I would like to express my feelings of admiration, love and respect to My Parents whose support was overwhelming.

Abstract

Type 2 diabetes has been linked with increased risk of dementia and cognitive impairment among older adults and with premature mortality in young and middleaged adults. **Objective:** This study aimed at examining the relation between type 2 diabetes mellitus and cognitive dysfunctions. Subjects: This study was conducted on 20 patients with type 2 diabetes of both sexes (15 males, 5 females) and twenty healthy control subjects, matched for age, sex and educational level. Methods: All patients were assessed using clinical evaluation, CT brain and Psychometric tests (Mini-Mental Status Examination, Beck Depression Scale, Halstead Reitan test, Wechsler Adult Intelligence Scale and Wechsler memory scale (WMS). Results: Statistically significant lower results were found in group1 when compared to group2 (p<0.05) in each of the following tests: Associative learning subtest of Wechsler Memory, Similarity and digit symbol subtests of Wechsler Adult Intelligence Scale. The results of group1 in vocabulary subtest of Wechsler Adult Intelligence Scale were lower than those of group2. However, this difference did not reach statistical significance (P>0.05). Conclusions: T2DM is a risk factor for cognitive impairment as it affects learning, memory, verbal comprehension, sustained attention and psychomotor speed.

Key words: Type 2Diabetes mellitus, cognitive functions, Wechsler memory scale.

List of Contents

	Page
List of Tables	II
List of Figure	III
List of Abbreviations	IV
Introduction & Aim of the Work	1
Review of Literature:	
Chapter I:Diabetes mellitus	4
Chapter II:Physiology of cognition	20
Chapter III: Cognitive Impairment	27
Chapter IV:Diabetes mellitus and cognition	42
Subject and Methods	60
Results	66
Discussion	75
Summary & Conclusion	83
Recommendation	85
References	86
Appendix	122
Arabic Summary	

List of Tables

Table No.	Table Title	Page No.
1	Etiologic Classifications of Diabetes Mellitus	5
2	Criteria for the Diagnosis of Diabetes Mellitus and Impaired Glucose Homeostasis	8
3	Classification and Staging of Diabetic Neuropathy	15
4	Sex distribution in both groups	67
5	Laboratory results of patients in group 1	68
6	Comparison between the results of psychometric tests in both groups	69
7	Comparison between males and females as regards the results of psychometric tests	71
8	Comparison between diabetic patient with > 10 years duration and those < 10 years as regards the results of psychometric tests	72
9	Correlation between sex, age, duration of diabetes and results of psychometric tests in group 1	73
10	Correlation between laboratory results and results of psychometric tests.	74

List of Figures

Figure No	Figure title	Page No
1	Age distribution in the two groups	66
2	Sex distribution among the two groups	67
3	Duration of illness of patients in group 1	67
4	Comparison between both groups as regards the results of subtests of WAIS	70
5	Comparison between both groups as regards the results of subtests of WMS	70

List of Abbreviations

2hrPPGTwo-hour postprandial glucose
AAMIAge associated memory impairment
A-betaAmyloid-beta
ACEAngiotensin converting enzyme
AChEAcetylcholine esterase
AD Alzheimer's disease
ADA American diabetes association
AGE Advanced glycation end-product
AGEsAdvanced glycation end products
AMPAAmino-3-hydroxy-5-methyl-soxazolepropionic acid
APOEApolipoprotein E
APOE-ε4 Apolipoprotein E type 4
APPAmyloid precursor protein
ARB Angiotensin receptor blocker
BB/Wor Rat models of type 1diabetes
BBZDR/Wor Bio-breeding zucker diabetic rate (Rat models of type 2
diabetes)
CADASILCerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy
CERADConsortium to Establish a Registry in Alzheimer's
disease
CHD Coronary heart disease
CNS Central nervous system
CSF Cerebrospinal fluid
CTComputerized tomography
CVD Cerebrovascular disease
DCCT Diabetes control and complication trail
DHAdocosahexaenoic acid
DLB Dementia with Lewy Bodies
DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders
Fourth Revision, Text Revision

EEG Electroencephalograph			
FDA Food and Drug Administration			
FDG PET Fluorodeoxyglucose-positron emission tomography			
FPGFasting plasma glucose			
FSIQ Full-scale I.Q.			
GABA Gama-Aminobutyric acid			
GLUT4Glucose transporter 4			
GLUT8Glucose transporter 8 also known as GLUTx1			
HbA1cGlycated hemoglobin			
HRBNTHalstead Reitan Battery of neuropsychological test			
IDDMInsulin-dependent diabetes mellitus			
IDEInsulin-degrading enzyme			
IL-6Interleukin-6			
IQIntelligence quotient			
KAKainate receptors			
MCIMild cognitive impairment			
MIMyocardial infarction			
MMSEMini-Mental Status Examination			
MODYMaturity-onset diabetes in youth			
MRIMagnetic resonance brain imaging			
mRNAMessenger ribonucleic			
MRSMagnetic resonance spectroscopy			
NAAN-Acetyl aspartate			
NGSPNational glycohemoglopin standardization program			
NIDDM Noninsulin-dependent diabetes mellitus.			
NIH-ADRDANational Institutes of Health-Alzheimer's disease and Related			
Disorders Association			
NMDAN-methyl-D aspartate			
NMDAN-methyl-d-aspartate			
NOSNitric oxide by blocking enzyme synthase			
PDDParkinson's disease Dementia			
PET Positron emission tomography			
PIQPerformance IQ			
RAGEsReceptors for AGE			

REM sleepR	capid eye movement sleep
T1DM Typ	pe 1 diabetes mellitus
T2DM Ty	ype 2 diabetes mellitus
UAEUr	inary albumen excretion
VCDVaso	cular cognitive disorder
VCIVas	cular cognitive impairment
VIQ V	erbal IQ
WAISWed	chsler Adult Intelligence Scale
WHO W	Vorld Health Organ
WMS-R W	Vechsler memory scale revised

Introduction

Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced (**David et al., 2011**).

Diabetes mellitus is classified into four broad categories: T1DM, T2DM, gestational diabetes and "other specific types. The "other specific types" are a collection of a few dozen individual causes (**David et al., 2011**).

Diabetes is associated with premature mortality and is a risk factor for mild cognitive impairment and both vascular dementia (**Peila et al., 2002**) and Alzheimer's disease (**MacKnight et al., 2002**, **Arvanitakis et al., 2004**). Individuals with diabetes are ~1.5 times more likely to experience cognitive decline and frank dementia than individuals without diabetes (**Cukierman et al., 2005**). Diabetes is also associated with decrements in learning and memory, mental flexibility and information-processing speed (**Van den Berg et al., 2010**).

Type 2 diabetes mellitus(T2DM) adversely affects many aspects of brain health, increasing individuals' risk for cognitive deficits, cognitive impairment, Alzheimer's disease, stroke, diminished brain function, and brain atrophy (Tiehuis et al., 2008, Sims-Robinson et al., 2010). Known consequences of T2DM, including vascular disease, oxidative stress, deregulated glucose metabolism, formation of advanced glycation end products, and chronic inflammation, are each associated with adverse brain health (Araki, 2009, Marioni et al., 2010). T2DM is also associated with many other conditions that adversely influence cognition and brain function, including obesity, hypertension, dyslipidemia, and depression (Williamson et al., 2007, Biessels et al 2009). How well glucose levels are managed during T2DM may also affect cognition (Cukierman et al., 2009). Jointly, these factors may be expected to induce a broad-based and sustained spectrum of cognitive deficits, with much heterogeneity from individual to individual.

Decreased cognitive performance has been extensively described among individuals with T2DM, with reduced performance in verbal declarative memory and processing speed being the most consistently reported (**Awad et al., 2004**). Type 2 diabetes mellitus (T2DM) is associated with an increased risk of dementia. There is still uncertainty on the etiology, but vascular disease is likely to play a role (**Biessels et al., 2008**). Clinically manifest atherosclerosis is associated with cognitive impairment in people with T2DM (**Manschot et al., 2007**, **Bruce et al., 2008**).

The mechanisms underlying these cognitive disorders are increasingly thought to involve mixed pathology, with contribution from vascular, neurodegenerative, and neurovascular processes (Strachan, 2011). Pathophysiological mechanisms that have been implicated include inflammation, oxidative stress, energy imbalance, protein misfolding and differences in genetic susceptibilities.(Klein and Waxman, 2003, Girouard and Iadecola, 2006).

T2DM-related cognitive changes and cerebral atrophy develop slowly over the course of years, at an average rate that is still within the range of that of normal aging (**De Bresser et al., 2010, Van den Berg et al., 2010).** Nevertheless, people with T2DM are overrepresented among those older individuals with accelerated cognitive decline (**Reijmer et al., 2010**).

AIM OF THE WORK

Aim of the Work

- o To study the pattern of cognitive impairment in a sample of Egyptian patients with type 2 diabetes mellitus.
- o To study the relationship between cognitive dysfunction and duration of diabetes.