Assessment of Mitral valve by Transesophageal echocardiography

Essay

Submitted for partial fulfillment of Master degree in anesthesia

By:

Mohammad El-Sayed Halawa

M.B.,B.Ch., Ain Shams University

Supervised by

Professor / Mohammed Ali Ahmed Zaghloul

Professor of anesthesia and intensive care Faculty of Medicine, Ain Shams University

Assis. professor/Amr Ahmad Abd-el Fattah

Assistant professor of anesthesia and intensive care Faculty of Medicine, Ain Shams University

Dr/Mostafa Mohamed Samy El Adawy

Lecturer of Anesthesia and intensive care Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Professor / Mohammed Ali Ahmed Zaghloul** Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Assis. professor/Amr Ahmad Abd-el Fattah Assistant professor of anesthesia and intensive care lecturer of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I feel deeply thankful to **Dr/Mostafa Mohamed**Samy El Adawy. Lecturer of Anesthesia and intensive care,
Faculty of Medicine Ain Shams University, for his continuous
unlimited help, unlimited patience and close supervision
throughout the entire work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction and Aim of the Work	1
Chapter (1): Anatomical consideration of mitral valve	4
Chapter (2): Basic principles of Echocardiography	15
Chapter (3): Assessment of Mitral regurge by TEE	29
Chapter (4): Assessment of Mitral stenosis by TEE	62
Chapter (5): Recent advances in TEE	76
Summary	84
References	85
Arabic Summary	

List of Abbreviations

2D : Two-dimensional : Three dimensional 3D AF : Atrial fibrillation : Anterior mitral leaflet **AML** : Amplitude mode A-mode : Aortic stenosis AS B-mode : Brightness mode : Coronary artery disease CAD CDMI : Color Doppler myocardial imaging **CFD** : Color flow Doppler **CFD** : Color-flow Doppler CHF : Congestive heart failure CWD : Continuous wave Doppler CWD : Continuous-wave Doppler DT : Deceleration time

EDF	: End diastolic volume
EROA	: Effective regurgitant orifice area
ESV	: End systolic volume
FSV	: Forward stroke volume
HPRF-PWI	O: High pulse repetition frequency pulsed wave Doppler
LA	: Left atrium
LAA	: Left atrial appendage \ Left atrial area
LAP	: Left atrial pressure
LAX	: Long axis
LFEF	: Left ventricular ejection fraction
LV	: Left ventricle
LVEDP	: Left ventricular end diastolic pressure
LVOT	: Left ventricular outflow tract
ME	: Mid-esophageal
MI	: Myocardial infarction
M-mode	: Motion mode

MR	: Mitral regurgitation
MS	: Mitral stenosis
MV	: Mitral valve
MVR	: Mitral valve repair
PBMV	: Percutaneous balloon mitral
	valvuloplasty
PHT	: Pressure half time
PISA	: Proximal isovelocity surface area
PML	: Posterior mitral leaflet
PWD	: Pulsed-wave Doppler
PW-TDI	: Pulsed wave tissue Doppler imaging
RF	: Regurgitant fraction
RJA	: Regurgitant jet area
RSV	: Regurgitant stroke volume
RT-3D	: Real time three dimensional
SAM	: Systolic anterior motion
SAX	: Short axis

STE	: Speckle tracking echocardiography
TEE	: Trans-esophageal echocardiography
TG	: Trans-gastric
TSV	: Total stroke volume

List of tables

Table	Title	Page
1	Grading the severity of organic mitral regurgitation	57
2	Wilkins scoring system	72
3	3D imaging modes	79

List of Figures

Fig.	Title	Page
1	Mitral valve anatomy	4
2	Mitral valve leaflets	6
3	Papillary muscles and the chordae	8
	tendineae	
4	Sound wave characteristics	15
5	ME five chamber view	35
6	ME LAX four chamber view and	35
	corresponding SAX cross sectional view	
7	ME commissural view and	36
	corresponding SAX cross sectional view	
8	ME two chamber view and	36
	corresponding SAX cross sectional view	
9	ME LAX view and corresponding SAX	36
	cross sectional view	
10	Transgastric basal SAX view	37
11	Transgastric two- chamber view	37
12	Mitral valve and its anatomic	39
	relationship to the aortic root (Ao) and	
	the left atrial appendage (LAA) as seen	
	from the left ventricular apex	
13	Relationship of the transesophageal	40
	echocardiographic imaging planes to the	
	mitral valve with the probe positioned in	
	the standard midesophageal position	
14	Carpentier nomenclature of mitral valve	40
15	Mitral leaflets coaptation	41
16	Prosthetic mitral valve and its anatomic	41
	relationship to the aortic root (Ao) and	
	left atrial appendage(LAA) as seen from	
	the left ventricular apex	

List of Figures (Cont.)

Fig.	Title	Page
17	Effect of flexion or withdrawal and	42
	retroflexion or advancement of the	
	transesophageal probe tip on the imaging	
	plane in relation to the mitral valve at a	
10	transducer rotational angle of 0 degrees	40
18	Effect of clockwise and	42
	counterclockwise probe rotation on the	
	imaging plane in relation to the mitral	
	valve with the transducer rotational	
	angle adjusted to the major axis of the	
10	mitral orifice (typically 45 to 90 degrees)	12
19	Schematic drawing of a typical	43
20	transgastric view	43
20	Schematic drawing of a typical lower transesophageal view	43
21	Schematic drawing of a typical lower	44
21	transesophageal view	77
22	Schematic drawing of a typical upper	44
	transesophageal view	
23	Four chamber view	46
24	Commissural view	47
25	Two-chamber view	47
26	Longitudinal view	47
27	Transgastric SAX view	48
28	Transgastric two chamber view	48
29	Carpentier's classification	49
30	Normal functioning bileaflet mechanical	63
	mitral valve	
31	Example of paravalvular leak	63
32	ME LAX view showing calcific MS	65
33	Hemodynamics of mitral stenosis	67
34	ME LAX view displaying diastolic	69
	doming of AML	

List of Figures (Cont.)

Fig.	Title	Page
35	Hockey stick deformity of AML in ME	69
	LAX view	
36	ME four chamber view showing (SEC)	71
37	3D zoom mode of the mitral valve	80
38	Normal mitral valve compared to mitral	81
	valves with moderate and severe mitral	
	stenosis	
39	Spatial resolution of the PW-TDI signal	82
40	Typical waveforms of PW and CDMI	83
41	2D strain analysis: numerical	84
	presentation of results	

Introduction

There has been a substantial increase in the use of Trans-esophageal echocardiography (TEE) in the last 10 years. Much of this has been due to the increase in peri-operative echocardiography in patients undergoing cardiac and major non-cardiac surgery, and in intensive care. Knowledge and skills of echocardiography are now part of the fundamental training of cardiologists, cardiac anesthesiologists, intensivists, and all specialists who care for patients undergoing cardiac surgery. The routine use of TEE in all open heart surgeries and thoracic aortic surgical procedures is one of the recent recommendations of North American Guidelines of the American society of anesthesiologists and the society of cardiovascular anesthesiologists. (*Thys et al.*,2010).

Transesophageal echocardiography (TEE) has become a standard of care in the cardiac operating room, allowing the anesthesiologist to play an important part in the surgical decision-making process. In that role, few areas are as challenging as the assessment of intraoperative mitral regurgitation (MR) and mitral stenosis (MS), and it has a high impact on the course of surgery and on patient outcome. (*Perrino and Reeve 2008*).

Introduction and Aim of The Work

Transesophageal echocardiography (TEE) is superior to the transthoracic approach for characterizing the anatomy and function of the mitral valve (MV). Transthoracic echocardiography is often adequate for the study of mitral stenosis. In patients with poor echocardiographic windows, or in whom TEE is performed for other reasons, the cause and severity of mitral stenosis are almost always revealed by TEE. (Nanda et al., 2007).

developments Doppler imaging Recent in have enhanced our capability to quantify myocardial function. Conventional techniques, including two-dimensional (2D) spectral and color-flow Doppler have clear imaging, limitations. To overcome these limitations, a number of technologies have been introduced, placing special emphasis on myocardial quantification. These include pulsed-wave tissue Doppler imaging (PW-TDI), color Doppler myocardial imaging (CDMI), speckle tracking echocardiography (STE) and three dimensional (3D) echocardiography. (Cheitlin et al., *2003*).

Aim of the Work

This study reviews the practical applications and recent advances in intra-operative assessment of mitral valve by Transesophageal echocardiography (TEE).

Chapter 1

Anatomical Consideration of the Mitral Valve

Mitral valve (MV) anatomy is a complex entity constituted of 6 different parts:

- 1) 2 leaflets
- 2) The annulus
- 3) 2 papillary muscles
- 4) Chordae tendinae
- 5) The fibrous skeleton of the heart
- 6) The left ventricular walls

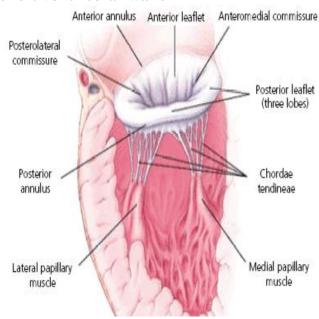


Fig. (1): Mitral valve anatomy

The leaflets:

Represent a continuous (uninterrupted) structure but showing some regional differences, being consequently subdivided in an anterior and a posterior segment separated by the two commissural areas (*May, Yin 1995*).