BIOLOGY OF THE ALMOND MOTH, Ephestia cautella (Walker) ON TWO LARVAL DIETS AND EFFICACY OF THREE EGG PARASITOIDS, Trichogramma spp. AND THE LARVAL PARASITOID, Habrobracon hebetor (Say) FOR CONTROLLING IT ON DRIED DATE FRUITS

 $\mathbf{B}\mathbf{v}$

MARWA MOHAMED AHMED FARAG

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Economic Entomology), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Economic Entomology)

Department of Economic Entomology and Pesticides
Faculty of Agriculture
Cairo University
EGYPT
2014

APPROVAL SHEET

BIOLOGY OF THE ALMOND MOTH, Ephestia cautella (Walker) ON TWO LARVAL DIETS AND EFFICACY OF THREE EGG PARASITOIDS, Trichogramma spp. AND THE LARVAL PARASITOID, Habrobracon hebetor (Say) FOR CONTROLLING IT ON DRIED DATE FRUITS

Ph.D. Thesis
In
Agric. Sci. (Economic Entomology)

By MARWA MOHAMED AHMED FARAG

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Economic Entomology), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Dr. SAYED HASSAN HUSSEIN HAMMOUDA Professor of Economic Entomology, Fac. Agric., Minia University.
Dr. ESSAM ABDEL MEGEID AGAMY
Professor of Economic Entomology, Fac. Agric., Cairo University.
Dr. SAYEDA SAYED AHMED ABDEL SAMAD
Associate Professor of Economic Entomology, Fac. Agric., Cairo University.
Dr. MONIR MOHAMED EI-HUSSEINI
Professor of Economic Entomology, Fac. Agric., Cairo University.

Date: 23 / 3 /2014

SUPERVISION SHEET

BIOLOGY OF THE ALMOND MOTH, Ephestia cautella (Walker) ON TWO LARVAL DIETS AND EFFICACY OF THREE EGG PARASITOIDS, Trichogramma spp. AND THE LARVAL PARASITOID, Habrobracon hebetor (Say) FOR CONTROLLING IT ON DRIED DATE FRUITS

Ph.D. Thesis
In
Agric. Sci. (Economic Entomology)

By

MARWA MOHAMED AHMED FARAG

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Economic Entomology), Fac. Agric., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. MONIR MOHAMED EL-HUSSEINI Professor of Economic Entomology, Fac. Agric., Cairo Univ.

Dr. SAYEDA SAYED AHMED ABDEL SAMAD Associate Professor of Economic Entomology, Fac. Agric., Cairo Univ.

Name of Candidate: Marwa Mohamed Ahmed Farag Degree: Ph.D.

Title of Thesis: Biology of the Almond Moth, *Ephestia cautella* (Walker) on Two Larval Diets and Efficacy of Three Egg Parasitoids,

Trichogramma spp. and the Larval Parasitoid, Habrobracon

hebetor (Say) for Controlling it on Dried Date Fruits

Supervisors: Dr. Monir Mohamed El-Husseini

Dr. Sayeda Sayed Ahmed Abdel Samad

Department: Economic Entomology and Pesticides

Branch: Economic Entomology Approval: 23/3/2014

ABSTRACT

Certain biological aspects of the almond moth, *Ephestia cautella* (Walker) and selected natural enemies of it (the egg parasitoids belong to the genus *Trichogramma* spp. and the larval parasitoid, *Habrobracon hebetor* (Say) were investigated as alternative pest management tools in post-harvest storage during the sun-drying period of date fruits. Biological studies were carried out at $27\pm2^{\circ}$ C, $65\pm5\%$ R.H. and 16:8 (L: D) illumination period, on both an artificial diet and date fruits. Considered biological aspects were ovipositional periods, fecundity, adult longevity, incubation period, hatchability, larval duration, pupal duration and generation period. The total life-cycle duration of *E. cautella* was shorter and fecundity higher when larvae were reared on the artificial diet compared to date fruits.

Three native species of the egg-parasitoid Trichogramma i.e., T. bour or achae, T. evanescens and T. cacoeciae were tested against E. cautella eggs. Host preference and host age preference were approximated. T. cacoeciae was the most effective against E. cautella eggs. Also, host instar preference was studied for the larval parasitoid, H. hebetor on E. cautella larvae. The effective density of release was tested for the egg parasitoid (T. cacoeciae) and larval parasitoid (H. hebetor) as bio-control agents on artificially infested date fruits by E. cautella eggs, $90 \ \cite{10}$ of egg-parasitoids and 10 pairs of larval-parasitoid/3Kg date fruits were effective densities for controlling E. cautella that gave 100% infestation reduction.

Key words: Ephestia cautella, Trichogramma bourorachae, T. evanescens, T. cacoeciae, Habrobracon hebetor, Biology, Biological control, dried date fruits.

ACKNOWLEDGEMENT

The writer wishes to expresses her deep appreciation and thanks to **Dr. Monir M. El-Husseini,** Professor of Economic Entomology, Faculty of Agriculture, Cairo University, for suggesting the research subject, fruitful supervision, careful guidance continuous advice, reading the manuscript and constructive criticism which made this work possible.

Thanks are also due to **Dr. Sayeda S. A. Abdel Samad**, Assistant Professor of Economic Entomology, Faculty of Agriculture, Cairo University, for her participation in the supervision, valuable advice, continues help, and reviewing the manuscript.

Thanks are further extended to **Dr. Essam A. Agamy**, Professor of Economic Entomology, Faculty of Agriculture, Cairo University, for providing the three tested Trichogramma spp. and the eggs of Sitotroga cerealella, and his valuable support throughout the course of this study.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Rearing of the almond moth, <i>Ephestia cautella</i> (Walker)	5
2. Biological control in stored products	7
a. Egg parasitoids <i>Trichogramma</i> spp	8
(1) Host preference	12
(2) Host age preference	16
b. Larval parasitoid Habrobracon hebetor	20
(1) Parasitism efficacy of <i>H. hebetor</i>	21
c. Effective control densities of egg and larval parasitoids	22
(1) Egg parasitoid density releases	22
(2) Larval parasitoid density releases	25
MATERIALS AND METHODS	29
1. Rearing of the almond moth, Ephestia cautella (Walker)	29
a. Stock culture reared on two different types of diet	29
b. Egg stage	30
c. Larval stage	30
d. Pupal stage	31
e. Adult stage	31
2. Efficacy of three egg parasitoids, Trichogramma spp. and	d the
larval parasitoid, Habrobracon hebetor (say) for controllin	
almond moth	
a. Egg parasitoids <i>Trichogramma</i> spp	
(1) Host preference	
(2) Host age preference	
b. Larval parasitoid <i>H. hebetor</i>	
(1) Rearing	
(2) Host age preference	
c. Effective densities of egg and larval parasitoids	
controlling the almond moth, <i>E. cautella</i>	
(1) Egg parasitoid density releases	36

(2) Larval parasitoid density releases	37
3. Statistical analysis	38
RESULTS AND DISCUSSION	39
1. Effect of diet type on certain biological aspects of Ephestia	
cautella	39
a. Incubation period and hatchability	39
b. Larval stage	40
c. Pupal stage	40
d. Oviposition periods, fecundity and oviposition rate	41
e. Adult longevity	43
f. Female generation period	44
2. Efficacy of three egg parasitoids, Trichogramma spp. and the	
larval parasitoid, Habrobracon hebetor (Say) for controlling the	,
almond moth	45
a. Egg parasitoids belonging to <i>Trichogramma</i> spp	45
(1) Host preference	45
(2) Host age preference	49
b. Larval parasitoid <i>Habrobracon hebetor</i>	52
(1) Life history of H . hebetor parasitizing larvae of E .	
cautella	52
(a) Adult longevity, oviposition and fecundity	52
(b) Durations of immature stages	56
(2) Host age preference	57
c. Effective densities of egg and larval parasitoids for	
controlling the almond moth, E. cautella on dried date fruits	58
(1) Egg parasitoid density releases	58
(2) Larval parasitoid density releases	65
SUMMARY	63
REFERENCES	69
ARARIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Egg incubation period and hatching percentage of <i>E. cautella</i> reared on two different larval diets under constant laboratory conditions	39
2.	Developmental time and pupation percentages of <i>E. cautella</i> larvae reared on two different larval diets under constant laboratory conditions	40
3.	Developmental time and emergence percentages of <i>E. cautella</i> pupal stage reared on two different larval diets under constant laboratory conditions	41
4.	Pre-oviposition, oviposition and post-oviposition periods of <i>E. cautella</i> reared on two different larval diets under constant laboratory conditions	42
5.	Female fecundity and daily oviposition rate of <i>E. cautella</i> reared on two different larval diets under constant laboratory conditions.	43
6.	Adult longevity of <i>E. cautella</i> reared on two different larval diets under laboratory conditions	43
7.	Generation duration of for <i>E. cautella</i> females reared on two different larval diets under constant laboratory conditions.	44
8.	Host preference of three <i>Trichogramma</i> spp. on two hosts (rearing host <i>S. cerealella</i> and target pest <i>E. cautella</i>) under constant laboratory conditions	46
9.	Mean numbers of black eggs of three <i>Trichogramma</i> spp. on two hosts (rearing host <i>S. cerealella</i> and target pest <i>E. cautella</i>) under conastant laboratory	40
	conditions	48

No.	Title	Page
10.	Host age discrimination of three <i>Trichogramma</i> spp. on <i>E. cautella</i> eggs under constant laboratory conditions	51
11.	Adult longevity, Ovipositional periods and fecundity of <i>H. hebetor</i> on <i>E. cautella</i> larvae under constant laboratory conditions	55
12.	Some biological aspects of the immature stages of <i>H. hebetor</i> on <i>E. cautella</i> larvae under constant laboratory conditions	56
13.	Host age preference of H . hebetor on E . cautella $(2^{nd} - 5^{th})$ larval instars under constant laboratory conditions	58
14.	Reduction % (infested date fruits) in <i>E. cautella</i> infestation when 3 different densities of <i>T. cacoeciae</i> (30, 60 and 90 \updownarrow) were used throughout 90 days of storage	59
15.	Reduction % (alive larvae) in <i>E. cautella</i> infestation when 3 different densities of <i>H. hebetor</i> (5, 10 and 20 pairs) were used throughout 90 days of storage	61

LIST OF FIGURES

No.	Title	Page
1.	(A) The chimney glass oviposition cage, (B) daily collected eggs	30
2.	Rearing of <i>E. cautella</i> larvae: A. on date fruits; B. on artificial diet	31
3.	Tube used in host preference studies (Agamy, 1994)	33
4.	(A) Tube used for host age selection test, (B) Sheet loaded with 4 rows of <i>E. cautella</i> eggs in different ages (Agamy, 1994)	34
5.	Rearing cage for <i>H. hebetor</i>	35
6.	Jars with infested date fruits samples by <i>E. cautella</i> eggs	37
7.	Host preference of three <i>Trichogramma</i> spp. (contact %) on two hosts (rearing host <i>S. cerealella</i> and target pest <i>E. cautella</i>)	47
8.	Mean numbers of black eggs of three <i>Trichogramma</i> spp. on two hosts (rearing host <i>S. cerealella</i> and target pest <i>E. cautella</i>)	49
9.	Host age preference of three <i>Trichogramma</i> spp. on <i>E. cautella</i> eggs	50
10	Different stages of the parasitoid <i>H. hebetor</i> : A) Male, B) Female, C) Egg deposited on the cuticle of the host larva, D) Parasitoid larvae on the host larva, E) Cocoon, F) Pupa	54
		<i>J</i> 1