

A Study Of Circulating Brain Derived Neurotrophic Factor In A Sample Of Egyptian Attention Deficit Hyperactive Children.

Thesis Submitted for fulfillment of Ph.D. in childhood studies
(Child Health and Nutrition)

Medical Studies Department

By

Shaimaa Adel Zaki

M.Sc Pediartics- Ain Shams University Assistant Researcher- National Research Centre Under Supervision of

Dr. Mona Medhat Reda

Professor of Psychiatry
Department of Medical Studies
Institute of Postgraduate Childhood
Studies

Dr. Hala Gouda Alnady

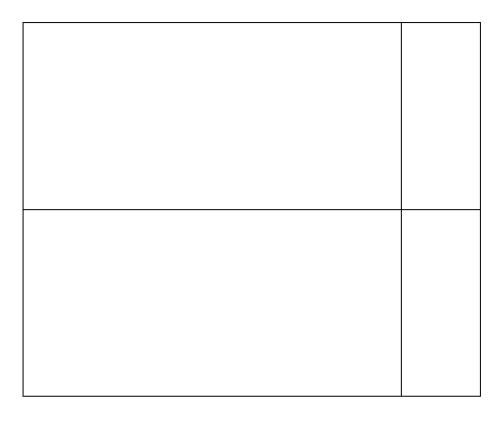
Professor of Child Health Department of Child Health National Research Centre

Dr. Menan Abdelmaksoud Rabie

Assistant professor of psychiatry

Department of psychiatry

Ain Shams university


Dr. Rania Fawzy Mahmoud

Researcher of immunogenetics Immunogenetics department National research center

Ain Shams University
2013

Contents

Title	pages
Acknowledgment	1-11
List of abbreviation	III-IV
List of Figures	V
List of Tables	VI-VIII
Aim of The Study	IX
Introduction	1
Review of Literature: • Attention Deficit Hyperactivity Disorder	5
Brain Derived neurotrophic factor	68
Subjects and Methods	95
Results	108
Discussion	138
Summary and Conclusion	161
Recommendations	164
References	165
Arabic summary	Í

Acknowledgement

First and foremost thanks are all to ALLAH.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to **prof. Dr. Mona Medhat Reda**, Professor of psychiatry, medical studies department, institute of postgraduate childhood studies, Ain Shams University, for her generous help, guidance, kind encouragement and great fruitful Advice during supervision of this work.

Grateful acknowledgement and deep appreciation are conveyed to prof. **Dr. Hala Gouda Alnady**, Professor of child health, Child health department, the National Research Center. For her great support careful supervision and continuous advice which helped me to overcome many difficulties.

I am deeply indebted to assistant professor Menan Abdelmaksoud Rabie. Assistant professor of psychiatry. Faculty of medicine Ain Shams University. For her great help, continuous support and sincere Advice.

I want to express my gratitude and appreciation to **Dr. Rania Fawzy Mahmoud**. Researcher of immunogenetics, immunogenetics department, National Research Center, For her help and Guidance.

I want to express my deepest thanks for **Dr. Mohamed Abelmonaem**, researcher of child health, Child health

department, National research Center, for his continuous support and advice.

My deepest appreciation to **Dr. Eman Ahmed Awadalla,** researcher of clinical pathology, Clinical pathology department National Research Center, for her helps through the clinical part of this work.

Special appreciation to the clinical psychologists **Mr. Abdelgawad Khalifa** and **Miss. Nihal Hamdy** for their great help in performing most psychological assessments needed in this study.

My deepest thanks to the Families who participated in this study for their cooperation and understanding.

Last but not least, I would like to present a lot of thanks to my family, friends, and to my colleagues for their support.

List of abbreviations

Abbreviation	
AAPs	Atypical antipsychotics
ADD	Attention deficit disorder
ADHD	Attention deficit hyperactivity disorder
ADRA2A	Adrenergic alpha 2 A receptor
AKT	Serine threonine kinase
ATX	atmoxetine
BD	Bipolar disorder
BDNF	Brain derived neurotrophic factor
CBT	cognitive behavioral therapy
CD	Conduct disorder
СТ	Cat scan
DA	Dopamine
DAT1	The dopamine active transporter 1 gene
DBH	Dopa- B_ hydroxylase
DMAP	urinary dimethyl alkylphosphate
DRD4,5	Dopamine receptor D4,5
DSM-II	Diagnostic and Statistical Manual of Mental
	Disorders II
DSM-III	Diagnostic and Statistical Manual of Mental
	Disorders III
DSM-IV-TR	diagnostic and statistical manual of mental
ED14	disorders- text revision IV
ERK	extracellular signal related kinase
FDA	Food and Drug Administration
5-HT	5-hydroxytryptamine
ICD9	International Classification of Diseases 9
ID	Intellectual disability
IFC	inferior frontal cortex
LD	learning disabilities
LTP	long-term potentiation
MAPK	mitogen-activated protein kinase
MDD	Major Depressive Disorder
MeCP2	methylated CpG binding protein
MPH	Methyl phenydate
MRI	Magnetic resonance imaging
NAc	nucleus accumbens
NE	norepinephrine

NGF1	nerve growth factor 1	
NICE	National Institute for Health and Clinical Excellence	
NIMH	National Institute of Mental Health	
NDMA	N-methyl-d-aspartate	
NTFs	neurotrophins	
NTRK2	Neurotrophic tyrosine kinase, receptor, type 2.	
ODD	Oppositional defiant disorder	
OFC	orbitofrontal cortex	
PCB	Polychlorinated biphenyls	
PET	positron emission tomography	
PFC	prefrontal cortex	
PI3K	phosphatidylinositol 3-kinase	
PLC	phospholipase C	
PTSD	post-traumatic stress disorder	
RTT	Rett syndrome	
SLC6A2	Solute carrier family 6 (neurotransmitter transporter,	
	dopamine), member 2	
SLC6A3	Solute carrier family 6 (neurotransmitter transporter,	
	dopamine), member 3	
SLC6A4	Solute carrier family 6 (neurotransmitter transporter,	
	dopamine), member 4	
SNAP25	Synaptosomal associated protein 25	
SNPs	single-nucleotide polymorphisms	
SPECT	Single-photon emission computed tomography	
SSRIs	Selective serotonin reuptake inhibitor	
SUDs	substance use disorders	
SZ	Schizophrenia	
TrkB	tropomyosin-related kinase B	
(V66M)	Valine to methionine mutation at position 66	
VTA	Ventral tegmental area.	

List of figures

Figure number	Title	Page
Figure 1	The associations of environmental risks with child attention deficit hyperactivity disorder	17
Figure2	Schematic representation of functional circuits involved in the pathophysiology of ADHD	30
Figure 3	the level and timing of catecholamine release in PFC	33
Figure 4	Comparison between Serum BDNF level between Cases and Controls:	113
Figure 5	ADHD subtypes in study population.	114
Figure 6	Mean plasma BDNF in new (untreated) and treated cases.	122

List of Tables

Table No	Title	Page
Table 1	Environmental risks that have been most commonly studied in relation to attention deficit hyperactivity disorder.	18
Table 2	DSM-IV-TR Diagnostic Criteria for Attention- Deficit/Hyperactivity Disorder.	39-40
Table 3	Adapted from ICD10: Classification of Mental and Behavioral Disorders.	44-45
Table 4	prevalence of ADHD comorbidities	51
Table 5	comparison between patients and healthy controls as regard age, Weight (kg), Weight for age (percentile), Weight for age (Z–score), Height (cm), Height for age (percentile), Height for age (Z–score), BMI (kg/m2), BMI for age (percentile), BMI for age (Z–score), Head circumference (cm).	108
Table 6	Comparison between patients and healthy controls as regards; Gender, Consanguinity and Handedness.	109
Table 7	Comparison between patients and controls as regard perinatal conditions and infancy.	110
Table 8	Comparison between patients and controls as regards psychiatric symptoms.	111
Table 9	Comparison between cases and Controls in Wechsler intelligence scale and Benton visual retention test.	112
Table 10	Comparison between cases and controls as regards the socioeconomic class.	112
Table 11	Comparison of Plasma BDNF level in ADHD subtypes.	114
Table 12	Comparison between plasma BDNF level in patients with normal and abnormal score for inattention in Connor's parent rating scale.	115
Table 13	Comparison of BDNF level in patients with normal or abnormal CPRS hyperactivity/impulsivity score	115

Table 14	Comparison of BDNF level in patients with normal or abnormal WISC digit span score	115
Table 15	Comparison of BDNF level in patients with normal or abnormal WISC coding score	116
Table 16	Doses of drugs and duration of treatment	116
Table 17	Comparison of treated and untreated cases as regard age, weight, weight for age(percentile), weight for age z- score, height, height for age (percentile), height for age (z-score), BMI, BMI for age (percentile), BMI for age (z-score) and head circumference.	117
Table 18	Comparison between drug Naïve patients and patients receiving treatment as regard gender difference, consanguinity and handedness	118
Table 19	Comparison between untreated and treated cases as regards perinatal and infancy conditions.	119
Table 20	Comparison between untreated and treated cases as regards sleep, eating and speech disorders, bladder control and academic achievement.	120
Table 21	Comparison between treated and untreated cases in Wechsler intelligence scale and Benton visual retention test.	121
Table 22	Comparison between treated and untreated cases as regards socioeconomic class.	121
Table 23	Correlation between Plasma BDNF level and anthropometric measures in whole study population	123
Table 24	Correlation between Plasma BDNF level and anthropometric measures in controls	124
Table 25	Correlation between Plasma BDNF level and anthropometric measures in cases	125
Table 26	Correlation between Plasma BDNF level and anthropometric measures in new cases.	126
Table 27	Correlation between Plasma BDNF level and anthropometric measures in treated cases	127
Table 28	Correlation between Plasma BDNF level and WISC in the whole study population	128

Table 29	Correlation between Plasma BDNF level and WISC in controls.	129
Table 30	Correlation between Plasma BDNF level and WISC in cases	130
Table 31	Correlation between Plasma BDNF level and WISC in new cases	131
Table 32	Correlation between Plasma BDNF level and WISC in treated cases	132
Table 33	Correlation between Plasma BDNF level and CPRS in cases	133
Table 34	Correlation between Plasma BDNF level and CPRS in new cases	134
Table 35	Correlation between Plasma BDNF level and CPRS in treated cases	135
Table 36	multiple linear regression model for predictors of BDNF level (model 1)	136
Table 37	Multiple linear regression model for effect of drug treatment on BDNF level in cases (model 2)	137
Table 38	multiple linear regression model for effect of drug treatment and ADHD subtype on BDNF level in cases (model 3)	137

Aim of the work

The aims of this study were; to investigate the possible relation between BDNF level and ADHD so it could be used as a potential marker for this disorder, to investigate the relation between severity of inattention and BDNF, to investigate the effect of pharmacotherapy on level of BDNF.

Introduction

Attention-deficit hyperactivity disorder (ADHD) has been identified as an important psychiatric condition in terms of its prevalence (around 5% worldwide) and its impact on quality of life for patients and their families (*Cho et al., 2010*). Also ADHD is the most commonly diagnosed behavioral disorder of childhood (*American Academy of Pediatrics, 2000*).

Attention-deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity, diminished sustained attention and higher levels of impulsivity in a child or adolescent than expected for someone of that age and developmental level (Sadock and Sadock, 2007). These core behavioral symptoms must be pervasive across situations, persistent for more than 6 months and observed before the age of 7 years, as defined by the diagnostic and statistical manual of mental disorders (DSM-IV-TR) issued by (the American Psychiatric Association, 2000).

These behavioral manifestations contribute to diminished academic, occupational and social functioning, and have neurobiological bases (*De La Fuente A, 2013*). 30 to

50% of those individuals diagnosed in childhood continue to have symptoms into adulthood. As they mature (Bálint et al, 2008).

The etiology of ADHD is now viewed to be pathophysiologically and clinically heterogeneous entity, hypotheses on the etiology of ADHD have evolved from simple one-cause theories to multi-factorial processes that reflect the confluence of many types of risk factors, including genetic, neurochemical, environmental and psychosocial factors (*Biederman and Faraone, 2005*).

Genetic research on ADHD started with the finding that hyperactivity tends to aggregate in families since then, family studies have shown that ADHD shows familial clustering both within and across generations. Increased rates of ADHD among the parents and siblings of ADHD children have been observed (*Franke et al., 2012*).

Evidence from various sources suggests primary involvement of the dopaminergic system. Molecular genetic studies also indicate a linkage of genetic polymorphisms in the dopaminergic system, such as dopamine D4 and D5 receptors, and dopamine transporter (DAT), to ADHD (Bobb et al., 2005).